相信科学系列,两种 100% 解法背后的分析证明|Java 刷题打卡

简介: 相信科学系列,两种 100% 解法背后的分析证明|Java 刷题打卡

题目描述



这是 LeetCode 上的765. 情侣牵手,难度为 Hard


NNN 对情侣坐在连续排列的 2N2N2N 个座位上,想要牵到对方的手。


计算最少交换座位的次数,以便每对情侣可以并肩坐在一起。


一次交换可选择任意两人,让他们站起来交换座位。


人和座位用 0002N−12N-12N1 的整数表示,情侣们按顺序编号,第一对是 (0,1)(0, 1)(0,1),第二对是 (2,3)(2, 3)(2,3),以此类推,最后一对是 (2N−2,2N−1)(2N-2, 2N-1)(2N2,2N1)


这些情侣的初始座位 row[i]row[i]row[i] 是由最初始坐在第 iii 个座位上的人决定的。


示例 1:


输入: row = [0, 2, 1, 3]
输出: 1
解释: 我们只需要交换row[1]和row[2]的位置即可。
复制代码


示例 2:


输入: row = [3, 2, 0, 1]
输出: 0
解释: 无需交换座位,所有的情侣都已经可以手牵手了。
复制代码


说明:


  • len(row)len(row)len(row) 是偶数且数值在 [4,60][4, 60][4,60] 范围内。
  • 可以保证 row 是序列 0...len(row)−10...len(row)-10...len(row)1 的一个全排列。


并查集



首先,我们总是以「情侣对」为单位进行设想:


  1. 当有两对情侣相互坐错了位置,ta们两对之间形成了一个环。需要进行一次交换,使得每对情侣独立(相互牵手)
  2. 如果三对情侣相互坐错了位置,ta们三对之间形成了一个环,需要进行两次交换,使得每对情侣独立(相互牵手)
  3. 如果四对情侣相互坐错了位置,ta们四对之间形成了一个环,需要进行三次交换,使得每对情侣独立(相互牵手)


也就是说,如果我们有 kkk 对情侣形成了错误环,需要交换 k−1k - 1k1 次才能让情侣牵手。


于是问题转化成 n/2n / 2n/2 对情侣中,有多少个这样的环。


可以直接使用「并查集」来做。


由于 0和1配对、2和3配对 ... 因此互为情侣的两个编号除以 2 对应同一个数字,可直接作为它们的「情侣组」编号。


代码:


class Solution {
    int[] p = new int[70];
    void union(int a, int b) {
        p[find(a)] = p[find(b)];
    }
    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }
    public int minSwapsCouples(int[] row) {
        int n = row.length, m = n / 2;
        for (int i = 0; i < m; i++) p[i] = i;
        for (int i = 0; i < n; i += 2) {
            union(row[i] / 2, row[i + 1] / 2);
        }
        int cnt = 0;
        for (int i = 0; i < m; i++) {
            if (i == find(i)) cnt++;
        }
        return m - cnt;
    }
}
复制代码


  • 时间复杂度:O(n)O(n)O(n)
  • 空间复杂度:O(n)O(n)O(n)


贪心算法



还是以「情侣对」为单位进行分析:


由于题目保证有解,我们也可以从前往后(每两格作为一步)处理,对于某一个位置而言,如果下一个位置不是应该出现的情侣的话。


则对下一个位置进行交换。


同时为了方便我们找到某个值的下标,需要先对 rowrowrow 进行预处理(可以使用哈希表或数组)。


代码:


class Solution {
    public int minSwapsCouples(int[] row) {
        int n = row.length;
        int ans = 0;
        int[] cache = new int[n];
        for (int i = 0; i < n; i++) cache[row[i]] = i;
        for (int i = 0; i < n - 1; i += 2) {
            int a = row[i], b = a ^ 1;
            if (row[i + 1] != b) {
                int src = i + 1, tar = cache[b];
                cache[row[tar]] = src;
                cache[row[src]] = tar;
                swap(row, src, tar);
                ans++;
            }
        }
        return ans;
    }
    void swap(int[] nums, int a, int b) {
        int c = nums[a];
        nums[a] = nums[b];
        nums[b] = c;
    }
}
复制代码


  • 时间复杂度:O(n)O(n)O(n)
  • 空间复杂度:O(n)O(n)O(n)


证明



我们这样的做法本质是什么?


其实相当于,当我处理到第 k 个位置的时候,前面的 k - 1 个位置的情侣已经牵手成功了。我接下来怎么处理,能够使得总花销最低。


分两种情况讨论:


a. 现在处理第 k 个位置,使其牵手成功:


那么我要使得第 k 个位置的情侣也牵手成功,那么必然是保留第 k 个位置的情侣中其中一位,再进行修改,这样的成本是最小的(因为只需要交换一次)。


而且由于前面的情侣已经牵手成功了,因此交换的情侣必然在 k 位置的后面。


然后我们再考虑交换左边或者右边对最终结果的影响。


分两种情况来讨论:


  1. 与第 k 个位置的匹配的两个情侣不在同一个位置上:这时候无论交换左边还是右边,后面需要调整的「情侣对数量」都是一样。假设处理第 k 个位置前需要调整的数量为 n 的话,处理完第 k 个位置(交换左边或是右边),需要调整的「情侣对数量」都为 n - 1


网络异常,图片无法展示
|


  1. 与第 k 个位置的匹配的两个情侣在同一个位置上:这时候无论交换左边还是右边,后面需要调整的「情侣对数量」都是一样。假设处理第 k 个位置前需要调整的数量为 n 的话,处理完第 k 个位置(交换左边或是右边),需要调整的「情侣对数量」都为 n - 2


网络异常,图片无法展示
|


因此对于第 k 个位置而言,交换左边还是右边,并不会影响后续需要调整的「情侣对数量」。


b. 现在先不处理第 k 个位置,等到后面的情侣处理的时候「顺便」处理第 k 位置:

由于我们最终都是要所有位置的情侣牵手,而且每一个数值对应的情侣数值是唯一确定的。


因此我们这个等“后面”的位置处理,其实就是等与第 k 个位置互为情侣的位置处理(对应上图的就是我们是在等 【0 x】和【8 y】或者【0 8】这些位置被处理)。


由于被处理都是同一批的联通位置,因此和「a. 现在处理第 k 个位置」的分析结果是一样的。


不失一般性的,我们可以将这个分析推广到第一个位置,其实就已经是符合「当我处理到第 k 个位置的时候,前面的 k - 1 个位置的情侣已经牵手成功了」的定义了。


综上所述,我们只需要确保从前往后处理,并且每次处理都保留第 k 个位置的其中一位,无论保留的左边还是右边都能得到最优解。


最后



这是我们「刷穿 LeetCode」系列文章的第 No.765 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先将所有不带锁的题目刷完。


在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。


为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour…


在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

相关文章
|
1月前
|
存储 Java
【编程基础知识】 分析学生成绩:用Java二维数组存储与输出
本文介绍如何使用Java二维数组存储和处理多个学生的各科成绩,包括成绩的输入、存储及格式化输出,适合初学者实践Java基础知识。
67 1
|
14天前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
32 2
|
15天前
|
Java 关系型数据库 数据库
面向对象设计原则在Java中的实现与案例分析
【10月更文挑战第25天】本文通过Java语言的具体实现和案例分析,详细介绍了面向对象设计的五大核心原则:单一职责原则、开闭原则、里氏替换原则、接口隔离原则和依赖倒置原则。这些原则帮助开发者构建更加灵活、可维护和可扩展的系统,不仅适用于Java,也适用于其他面向对象编程语言。
10 2
|
1月前
|
Java
让星星⭐月亮告诉你,Java synchronized(*.class) synchronized 方法 synchronized(this)分析
本文通过Java代码示例,介绍了`synchronized`关键字在类和实例方法上的使用。总结了三种情况:1) 类级别的锁,多个实例对象在同一时刻只能有一个获取锁;2) 实例方法级别的锁,多个实例对象可以同时执行;3) 同一实例对象的多个线程,同一时刻只能有一个线程执行同步方法。
18 1
|
20天前
|
存储 Java 编译器
[Java]基本数据类型与引用类型赋值的底层分析
本文详细分析了Java中不同类型引用的存储方式,包括int、Integer、int[]、Integer[]等,并探讨了byte与其他类型间的转换及String的相关特性。文章通过多个示例解释了引用和对象的存储位置,以及字符串常量池的使用。此外,还对比了String和StringBuilder的性能差异,帮助读者深入理解Java内存管理机制。
18 0
|
6天前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
15天前
|
安全 Java
java 中 i++ 到底是否线程安全?
本文通过实例探讨了 `i++` 在多线程环境下的线程安全性问题。首先,使用 100 个线程分别执行 10000 次 `i++` 操作,发现最终结果小于预期的 1000000,证明 `i++` 是线程不安全的。接着,介绍了两种解决方法:使用 `synchronized` 关键字加锁和使用 `AtomicInteger` 类。其中,`AtomicInteger` 通过 `CAS` 操作实现了高效的线程安全。最后,通过分析字节码和源码,解释了 `i++` 为何线程不安全以及 `AtomicInteger` 如何保证线程安全。
java 中 i++ 到底是否线程安全?
|
2天前
|
安全 Java 开发者
深入解读JAVA多线程:wait()、notify()、notifyAll()的奥秘
在Java多线程编程中,`wait()`、`notify()`和`notifyAll()`方法是实现线程间通信和同步的关键机制。这些方法定义在`java.lang.Object`类中,每个Java对象都可以作为线程间通信的媒介。本文将详细解析这三个方法的使用方法和最佳实践,帮助开发者更高效地进行多线程编程。 示例代码展示了如何在同步方法中使用这些方法,确保线程安全和高效的通信。
16 9
|
5天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####
|
2天前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin