Google Earth Engine ——Landsat 7 ETM+传感器的大气校正表面反射率数据集

简介: Google Earth Engine ——Landsat 7 ETM+传感器的大气校正表面反射率数据集

This dataset is the atmospherically corrected surface reflectance from the Landsat 7 ETM+ sensor. These images contain 4 visible and near-infrared (VNIR) bands and 2 short-wave infrared (SWIR) bands processed to orthorectified surface reflectance, and one thermal infrared (TIR) band processed to orthorectified brightness temperature. The VNIR and SWIR bands have a resolution of 30m / pixel. The TIR band, while originally collected with a resolution of 120m / pixel (60m / pixel for Landsat 7) has been resampled using cubic convolution to 30m.

These data have been atmospherically corrected using LEDAPS, and include a cloud, shadow, water and snow mask produced using CFMASK, as well as a per-pixel saturation mask.


Strips of collected data are packaged into overlapping "scenes" covering approximately 170km x 183km using a standardized reference grid.

See also the USGS page on SR QA bands.

SR can only be produced for Landsat assets processed to the L1TP level

Data provider notes:

  • SR is not run for a scene with a solar zenith angle greater than 76°.
  • Users are cautioned to avoid using SR for data acquired over high latitudes (> 65°).
  • The panchromatic band (ETM+ Band 7, OLI Band 8) is not processed to Surface Reflectance.
  • Efficacy of SR correction will be likely reduced in areas where atmospheric correction is affected by adverse conditions:
  • Hyper-arid or snow-covered regions
  • Low sun angle conditions
  • Coastal regions where land area is small relative to adjacent water
  • Areas with extensive cloud contamination


This product is generated by Google using a Docker image supplied by USGS.

该数据集是Landsat 7 ETM+传感器的大气校正表面反射率。这些图像包含4个可见光和近红外(VNIR)波段和2个短波红外(SWIR)波段,这些波段被处理为正交的表面反射率,还有一个热红外(TIR)波段被处理为正交的亮度温度。VNIR和SWIR波段的分辨率为30米/像素。热红外波段,虽然最初是以120米/像素的分辨率采集的(Landsat 7为60米/像素),但已经用三次卷积法重新取样到30米。

这些数据已经用LEDAPS进行了大气校正,包括用CFMASK制作的云、影、水和雪掩码,以及每个像素的饱和度掩码。

收集的数据条被打包成重叠的 "场景",使用标准化的参考网格,覆盖大约170公里x183公里。

另见美国地质调查局关于SR质量保证带的网页。

SR只能为处理到L1TP级别的Landsat资产制作。

数据提供者说明。

对于太阳天顶角大于76°的场景,不运行SR。

提醒用户避免对在高纬度地区(>65°)获取的数据使用SR。

全色波段(ETM+波段7,OLI波段8)不处理为表面反射率。

在大气校正受到不利条件影响的地区,SR校正的效果将可能降低。

超干旱或被雪覆盖的地区

低太阳角条件

陆地面积相对于邻近水域较小的沿海地区

有大量云层污染的地区

本产品由谷歌使用USGS提供的Docker图像生成。

Name Type Description
CLOUD_COVER Int Percentage cloud cover, -1 = not calculated. (Obtained from raw Landsat metadata)
CLOUD_COVER_LAND Int Percentage cloud cover over land, -1 = not calculated. (Obtained from raw Landsat metadata)
EARTH_SUN_DISTANCE Double Earth-Sun distance (AU)
ESPA_VERSION String Internal ESPA image version used to compute SR
GEOMETRIC_RMSE_MODEL Double Combined RMSE (Root Mean Square Error) of the geometric residuals (meters) in both across-track and along-track directions. (Obtained from raw Landsat metadata)
GEOMETRIC_RMSE_MODEL_X Double RMSE (Root Mean Square Error) of the geometric residuals (meters) measured on the GCPs (Ground Control Points) used in geometric precision correction in the along-track direction. (Obtained from raw Landsat metadata)
GEOMETRIC_RMSE_MODEL_Y Double RMSE (Root Mean Square Error) of the geometric residuals (meters) measured on the GCPs (Ground Control Points) used in geometric precision correction in the across-track direction. (Obtained from raw Landsat metadata)
IMAGE_QUALITY Int Image quality, 0 = worst, 9 = best, -1 = quality not calculated. (Obtained from raw Landsat metadata)
LANDSAT_ID String Landsat Product Identifier (Collection 1)
LEVEL1_PRODUCTION_DATE Int Date of production for raw Level 1 data as ms since epoch
PIXEL_QA_VERSION String Version of the software used to produce the 'pixel_qa' band
SATELLITE String Name of satellite
SENSING_TIME String Time of the observations as in ISO 8601 string. (Obtained from raw Landsat metadata)
SOLAR_AZIMUTH_ANGLE Double Solar azimuth angle
SR_APP_VERSION String LEDAPS version used to process surface reflectance
WRS_PATH Int WRS path number of scene
WRS_ROW Int WRS row number of scene


Dataset Availability

1999-01-01T00:00:00 - 2021-08-12T00:00:00

Dataset Provider

USGS

Collection Snippet

ee.ImageCollection("LANDSAT/LE07/C01/T1_SR")

Resolution

30 meters

Bands Table

Name Description Units Wavelength Scale
B1 Band 1 (blue) surface reflectance 0.45-0.52 μm 0.0001
B2 Band 2 (green) surface reflectance 0.52-0.60 μm 0.0001
B3 Band 3 (red) surface reflectance 0.63-0.69 μm 0.0001
B4 Band 4 (near infrared) surface reflectance 0.77-0.90 μm 0.0001
B5 Band 5 (shortwave infrared 1) surface reflectance 1.55-1.75 μm 0.0001
B6 Band 6 brightness temperature. While originally collected with a resolution of 120m / pixel (60m / pixel for Landsat 7), this band has been resampled using cubic convolution to 30m. Kelvin 10.40-12.50 μm 0.1
B7 Band 7 (shortwave infrared 2) surface reflectance 2.08-2.35 μm 0.0001
sr_atmos_opacity Atmospheric opacity; < 0.1 = clear; 0.1 - 0.3 = average; > 0.3 = hazy 0.001
sr_cloud_qa Cloud quality attributes. Note: pixel_qa is likely to present more accurate results than sr_cloud_qa for cloud masking. See page 14 in the [LEDAPS product guide](https://www.usgs.gov/media/files/landsat-4-7-surface-reflectance-code-ledaps-product-guide). 0
sr_cloud_qa Bitmask
  • Bit 0: Dark Dense Vegetation (DDV)
  • Bit 1: Cloud
  • Bit 2: Cloud shadow
  • Bit 3: Adjacent to cloud
  • Bit 4: Snow
  • Bit 5: Water
pixel_qa Pixel quality attributes generated from the CFMASK algorithm. 0
pixel_qa Bitmask
  • Bit 0: Fill
  • Bit 1: Clear
  • Bit 2: Water
  • Bit 3: Cloud Shadow
  • Bit 4: Snow
  • Bit 5: Cloud
  • Bits 6-7: Cloud Confidence
    • 0: None
    • 1: Low
    • 2: Medium
    • 3: High
radsat_qa Radiometric saturation QA 0
radsat_qa Bitmask
  • Bit 0: Data Fill Flag
    • 0: Valid data
    • 1: Invalid data
  • Bit 1: Band 1 data saturated
  • Bit 2: Band 2 data saturated
  • Bit 3: Band 3 data saturated
  • Bit 4: Band 4 data saturated
  • Bit 5: Band 5 data saturated
  • Bit 6: Band 6 data saturated
  • Bit 7: Band 7 data saturated


Landsat datasets are federally created data and therefore reside in the public domain and may be used, transferred, or reproduced without copyright restriction.

Acknowledgement or credit of the USGS as data source should be provided by including a line of text citation such as the example shown below.

(Product, Image, Photograph, or Dataset Name) courtesy of the U.S. Geological Survey

Example: Landsat-7 image courtesy of the U.S. Geological Survey

See the USGS Visual Identity System Guidance for further details on proper citation and acknowledgement of USGS products.

代码:

var dataset = ee.ImageCollection('LANDSAT/LE07/C01/T1_32DAY_NDVI')
                  .filterDate('1999-01-01', '2002-12-31');
var colorized = dataset.select('NDVI');
var colorizedVis = {
  min: 0.0,
  max: 1.0,
  palette: [
    'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901',
    '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01',
    '012E01', '011D01', '011301'
  ],
};
Map.setCenter(6.746, 46.529, 6);
Map.addLayer(colorized, colorizedVis, 'Colorized');



相关文章
|
9月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2911 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
9月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
126 0
|
9月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
199 0
|
9月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
294 0
|
7月前
|
自然语言处理 安全 Shell
Linux 提权-SUID/SGID_1 本文通过 Google 翻译 SUID | SGID Part-1 – Linux Privilege Escalation 这篇文章所产生,本人仅是对机器翻译中部分表达别扭的字词进行了校正及个别注释补充。
接下来,让我们看看 SUID3NUM 在枚举 SUID 二进制文件方面的表现如何。 3.2、枚举 SUID 二进制文件 – SUID3NUM 我们将用来枚举 SUID 二进制文件的第二个工具是 SUID3NUM。这是一个很棒的工具,因为它是专门为枚举 SUID 二进制文件而创建的。但这还不是全部,它还提供了可用于提升权限的命令(命令从 GTFOBins 中提取)。 这还不是最好的部分,SUID3NUM 还具有内置的 autopwn 功能,可以通过 -e 开关激活! 在 OSCP 考试中也使用此工具,只要您不使用自动利用功能。 3.2.1、下载并执行 SUID3NUM 我们可以从 GitHubs
58 0
|
9月前
|
人工智能
Google Earth Engine(GEE)——全球1公里的云量MODIS图像数据集
Google Earth Engine(GEE)——全球1公里的云量MODIS图像数据集
178 0
Google Earth Engine(GEE)——全球1公里的云量MODIS图像数据集
|
9月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
141 0
|
9月前
|
数据采集 编解码 人工智能
Google Earth Engine(GEE)——全球每日近地表空气温度(2003-2020年)
Google Earth Engine(GEE)——全球每日近地表空气温度(2003-2020年)
294 0
|
9月前
|
人工智能
Google Earth Engine(GEE)——1984-2019年美国所有土地上的大火烧伤严重程度和范围数据集
Google Earth Engine(GEE)——1984-2019年美国所有土地上的大火烧伤严重程度和范围数据集
94 0
|
9月前
Google Earth Engine(GEE)——当你无法进行两个图像相减的时候发生错误lst2020.subtract is not a function
Google Earth Engine(GEE)——当你无法进行两个图像相减的时候发生错误lst2020.subtract is not a function
100 0