why哥被阿里一道基础面试题给干懵了,一气之下写出万字长文。 (3)

简介: why哥被阿里一道基础面试题给干懵了,一气之下写出万字长文。 (3)

结合着 class 文件看:


image.png


奇怪了,同样的 switch 语言,却对应两个指令:lookupswitch 和 tableswitch。


所以这两个指令肯定是关键突破点。


我们去哪里找这个两个指令的信息呢?


肯定是得找权威资料的:


image.png


怎么样?


The Java® Virtual Machine Specification,Java 虚拟机规范,你就大声的告诉我稳不稳?


https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-3.html#jvms-3.10


image.png


发现这两个指令,在 Compiling Switches 这一小节中是挨在一起的。


找到这里了,你就找到正确答案的门了。我带领大家看一下我通过这个门,看到的门后面的世界。


首先还是给大家带着我自己的理解,翻译一下虚拟机规范里面是怎么介绍这两个指令的:


image.png


switch 语句的编译使用的是 tableswitch 和 lookupswitch 这两个指令。


我们先说说 tableswitch 是干啥的。


当 switch 里面的 case 可以用偏移量进行有效表示的时候,我们就用 tableswitch 指令。如果 switch 语句的表达式计算出来的值不在这个偏移量的有效范围内,那么就进入 default 语句。


看不太明白对不对?


没关系,我第一次看的时候也不太明白。别急,我们看看官方示例:


image.png


因为我们 case 的条件是 0、1、2 这三个挨在一起的数据,挨在一起就是 near 。所以这个方法就叫做 chooseNear 。


而这个 0、1、2 就是三个连在一起的数字,所以我们可以用偏移量直接找到其对应的下一个需要跳转的地址。


这个就有点类似于数组,直接通过索引下标就能定位到数据。而下标,是一串连续的数字。


这个场景下,我们就可以用 tableswitch。


image.png


当 switch 语句里面 case 的值比较“稀疏”(sparse)的时候,用 tableswitch 指令的话空间利用率就会很低下。于是我们就用 lookupswitch 指令来代替 tableswitch。

你注意官网上用的这个词:sparse。


image.png


没想到吧,学技术的时候还能学个英语四级单词。


稀疏。翻译过来了,还是读不懂是不是,没有关系。我给你搞个例子:


image.png


左边是 java 文件,里面的 case 只有 0、2、4。


右边是字节码文件, tableswitch 里面有0、1、2、3、4。


对应的 class 文件是这样的:


image.png


嘿,你说怎么着?莫名其妙多了个 1 和 3 的 case 。你说神奇不神奇?


这是在干嘛?这不就是在填位置嘛。


填位置的目的是什么?不就是为了保证 java 文件里面的 case 对应的值刚好能和偏移量对上吗?


假设这个时候 switch 表达式的值是 2,我直接根据偏移量 2 ,就可以取到 2 对应的接下来需要执行的地方 47,然后接着执行输出语句了:


image.png




目录
相关文章
|
7天前
|
监控 Kubernetes Java
阿里面试:5000qps访问一个500ms的接口,如何设计线程池的核心线程数、最大线程数? 需要多少台机器?
本文由40岁老架构师尼恩撰写,针对一线互联网企业的高频面试题“如何确定系统的最佳线程数”进行系统化梳理。文章详细介绍了线程池设计的三个核心步骤:理论预估、压测验证和监控调整,并结合实际案例(5000qps、500ms响应时间、4核8G机器)给出具体参数设置建议。此外,还提供了《尼恩Java面试宝典PDF》等资源,帮助读者提升技术能力,顺利通过大厂面试。关注【技术自由圈】公众号,回复“领电子书”获取更多学习资料。
|
3月前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
11天前
|
人工智能 缓存 Ubuntu
AI+树莓派=阿里P8技术专家。模拟面试、学技术真的太香了 | 手把手教学
本课程由阿里P8技术专家分享,介绍如何使用树莓派和阿里云服务构建AI面试助手。通过模拟面试场景,讲解了Java中`==`与`equals`的区别,并演示了从硬件搭建、语音识别、AI Agent配置到代码实现的完整流程。项目利用树莓派作为核心,结合阿里云的实时语音识别、AI Agent和文字转语音服务,实现了一个能够回答面试问题的智能玩偶。课程展示了AI应用的简易构建过程,适合初学者学习和实践。
71 22
|
1月前
|
存储 NoSQL 架构师
阿里面试:聊聊 CAP 定理?哪些中间件是AP?为什么?
本文深入探讨了分布式系统中的“不可能三角”——CAP定理,即一致性(C)、可用性(A)和分区容错性(P)三者无法兼得。通过实例分析了不同场景下如何权衡CAP,并介绍了几种典型分布式中间件的CAP策略,强调了理解CAP定理对于架构设计的重要性。
90 4
|
2月前
|
存储 NoSQL 算法
阿里面试:亿级 redis 排行榜,如何设计?
本文由40岁老架构师尼恩撰写,针对近期读者在一线互联网企业面试中遇到的高频面试题进行系统化梳理,如使用ZSET排序统计、亿级用户排行榜设计等。文章详细介绍了Redis的四大统计(基数统计、二值统计、排序统计、聚合统计)原理和应用场景,重点讲解了Redis有序集合(Sorted Set)的使用方法和命令,以及如何设计社交点赞系统和游戏玩家排行榜。此外,还探讨了超高并发下Redis热key分治原理、亿级用户排行榜的范围分片设计、Redis Cluster集群持久化方式等内容。文章最后提供了大量面试真题和解决方案,帮助读者提升技术实力,顺利通过面试。
|
2月前
|
SQL 关系型数据库 MySQL
阿里面试:1000万级大表, 如何 加索引?
45岁老架构师尼恩在其读者交流群中分享了如何在生产环境中给大表加索引的方法。文章详细介绍了两种索引构建方式:在线模式(Online DDL)和离线模式(Offline DDL),并深入探讨了 MySQL 5.6.7 之前的“影子策略”和 pt-online-schema-change 方案,以及 MySQL 5.6.7 之后的内部 Online DDL 特性。通过这些方法,可以有效地减少 DDL 操作对业务的影响,确保数据的一致性和完整性。尼恩还提供了大量面试题和解决方案,帮助读者在面试中充分展示技术实力。
|
3月前
|
消息中间件 存储 canal
阿里面试:canal+MQ,会有乱序的问题吗?
本文详细探讨了在阿里面试中常见的问题——“canal+MQ,会有乱序的问题吗?”以及如何保证RocketMQ消息有序。文章首先介绍了消息有序的基本概念,包括全局有序和局部有序,并分析了RocketMQ中实现消息有序的方法。接着,针对canal+MQ的场景,讨论了如何通过配置`canal.mq.partitionsNum`和`canal.mq.partitionHash`来保证数据同步的有序性。最后,提供了多个与MQ相关的面试题及解决方案,帮助读者更好地准备面试,提升技术水平。
阿里面试:canal+MQ,会有乱序的问题吗?
|
3月前
|
消息中间件 架构师 Java
阿里面试:秒杀的分布式事务, 是如何设计的?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴在面试阿里、滴滴、极兔等一线互联网企业时,遇到了许多关于分布式事务的重要面试题。为了帮助大家更好地应对这些面试题,尼恩进行了系统化的梳理,详细介绍了Seata和RocketMQ事务消息的结合,以及如何实现强弱结合型事务。文章还提供了分布式事务的标准面试答案,并推荐了《尼恩Java面试宝典PDF》等资源,帮助大家在面试中脱颖而出。
|
3月前
|
SQL 关系型数据库 MySQL
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
尼恩,一位40岁的资深架构师,通过其丰富的经验和深厚的技術功底,为众多读者提供了宝贵的面试指导和技术分享。在他的读者交流群中,许多小伙伴获得了来自一线互联网企业的面试机会,并成功应对了诸如事务ACID特性实现、MVCC等相关面试题。尼恩特别整理了这些常见面试题的系统化解答,形成了《MVCC 学习圣经:一次穿透MYSQL MVCC》PDF文档,旨在帮助大家在面试中展示出扎实的技术功底,提高面试成功率。此外,他还编写了《尼恩Java面试宝典》等资料,涵盖了大量面试题和答案,帮助读者全面提升技术面试的表现。这些资料不仅内容详实,而且持续更新,是求职者备战技术面试的宝贵资源。
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
|
3月前
|
Kubernetes 架构师 算法
阿里面试:全国14亿人,统计出重名最多的前100个姓名
文章介绍了如何解决“从全国14亿人的数据中统计出重名人数最多的前100位姓名”的面试题,详细分析了多种数据结构的优缺点,最终推荐使用前缀树(Trie)+小顶堆的组合。文章还提供了具体的Java代码实现,并讨论了在内存受限情况下的解决方案,强调了TOP N问题的典型解题思路。最后,鼓励读者通过系统化学习《尼恩Java面试宝典》提升面试技巧。
阿里面试:全国14亿人,统计出重名最多的前100个姓名

热门文章

最新文章