Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_AER_AI)紫外线气溶胶指数 (UVAI) 的近实时高分辨率数据集

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_AER_AI)紫外线气溶胶指数 (UVAI) 的近实时高分辨率数据集

NRTI/L3_AER_AI

 

This dataset provides near real-time high-resolution imagery of the UV Aerosol Index (UVAI), also called the Absorbing Aerosol Index (AAI).

The AAI is based on wavelength-dependent changes in Rayleigh scattering in the UV spectral range for a pair of wavelengths. The difference between observed and modelled reflectance results in the AAI. When the AAI is positive, it indicates the presence of UV-absorbing aerosols like dust and smoke. It is useful for tracking the evolution of episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning.

The wavelengths used have very low ozone absorption, so unlike aerosol optical thickness measurements, AAI can be calculated in the presence of clouds. Daily global coverage is therefore possible.

For this L3 AER_AI product, the absorbing_aerosol_index is calculated with a pair of measurements at the 354 nm and 388 nm wavelengths.


数据集提供了紫外线气溶胶指数 (UVAI) 的近实时高分辨率图像,也称为吸收气溶胶指数 (AAI)。

AAI 基于一对波长的 UV 光谱范围内瑞利散射的波长相关变化。观察到的和模拟的反射率之间的差异导致了 AAI。当 AAI 为正值时,表明存在吸收紫外线的气溶胶,如灰尘和烟雾。它可用于跟踪粉尘爆发、火山灰和生物质燃烧引起的偶发气溶胶羽流的演变。

所使用的波长对臭氧的吸收非常低,因此与气溶胶光学厚度测量不同,AAI 可以在有云的情况下计算。因此,每日全球报道是可能的。

对于此 L3 AER_AI 产品,吸收气溶胶指数是通过在 354 nm 和 388 nm 波长处进行的一对测量计算得出的。


NRTI L3 Product

To make our NRTI L3 products, we use harpconvert to grid the data.

Example harpconvert invocation for one tile:

harpconvert --format hdf5 --hdf5-compression 9
-a 'absorbing_aerosol_index_validity>50;derive(datetime_stop {time});
bin_spatial(2001, 50.000000, 0.01, 2001, -120.000000, 0.01);
keep(absorbing_aerosol_index,sensor_altitude,sensor_azimuth_angle,
     sensor_zenith_angle,solar_azimuth_angle,solar_zenith_angle)'
S5P_NRTI_L2__AER_AI_20181113T080042_20181113T080542_05618_01_010200_20181113T083707.nc
output.h5


Sentinel-5 Precursor

Sentinel-5 Precursor is a satellite launched on 13 October 2017 by the European Space Agency to monitor air pollution. The onboard sensor is frequently referred to as Tropomi (TROPOspheric Monitoring Instrument).

All of the S5P datasets, except CH4, have two versions: Near Real-Time (NRTI) and Offline (OFFL). CH4 is available as OFFL only. The NRTI assets cover a smaller area than the OFFL assets, but appear more quickly after acquisition. The OFFL assets contain data from a single orbit (which, due to half the earth being dark, contains data only for a single hemisphere).

Because of noise on the data, negative vertical column values are often observed in particular over clean regions or for low SO2 emissions. It is recommended not to filter these values except for outliers, i.e. for vertical columns lower than -0.001 mol/m^2.

The original Sentinel 5P Level 2 (L2) data is binned by time, not by latitude/longitude. To make it possible to ingest the data into Earth Engine, each Sentinel 5P L2 product is converted to L3, keeping a single grid per orbit (that is, no aggregation across products is performed).

Source products spanning the antimeridian are ingested as two Earth Engine assets, with suffixes _1 and _2.

The conversion to L3 is done by the harpconvert tool using the bin_spatial operation. The source data is filtered to remove pixels with QA values less than:

  • 80% for AER_AI
  • 75% for the tropospheric_NO2_column_number_density band of NO2
  • 50% for all other datasets except for O3 and SO2

The O3_TCL product is ingested directly (without running harpconvert).

Dataset Availability

2018-07-10T11:17:44 - 2021-09-05T00:00:00

Dataset Provider

European Union/ESA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_AER_AI")

Resolution

0.01 degrees

Bands Table

Name Description Min* Max* Units
absorbing_aerosol_index A measure of the prevalence of aerosols in the atmosphere, calculated by [this equation](https://earth.esa.int/web/sentinel/technical-guides/sentinel-5p/level-2/aerosol-index) using the 354/388 wavelength pair. -25 39
sensor_altitude Altitude of the satellite with respect to the geodetic sub-satellite point (WGS84). 828543 856078 m
sensor_azimuth_angle Azimuth angle of the satellite at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
sensor_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 0.09 67 degrees
solar_azimuth_angle Azimuth angle of the Sun at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
solar_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 8 88 degrees


* = Values are estimated

影像属性:

Name Type Description
ALGORITHM_VERSION String The algorithm version used in L2 processing. It's separate from the processor (framework) version, to accommodate different release schedules for different products.
BUILD_DATE String The date, expressed as milliseconds since 1 Jan 1970, when the software used to perform L2 processing was built.
HARP_VERSION Int The version of the HARP tool used to grid the L2 data into an L3 product.
INSTITUTION String The institution where data processing from L1 to L2 was performed.
L3_PROCESSING_TIME Int The date, expressed as milliseconds since 1 Jan 1970, when Google processed the L2 data into L3 using harpconvert.
LAT_MAX Double The maximum latitude of the asset (degrees).
LAT_MIN Double The minimum latitude of the asset (degrees).
LON_MAX Double The maximum longitude of the asset (degrees).
LON_MIN Double The minimum longitude of the asset (degrees).
ORBIT Int The orbit number of the satellite when the data was acquired.
PLATFORM String Name of the platform which acquired the data.
PROCESSING_STATUS String The processing status of the product on a global level, mainly based on the availability of auxiliary input data. Possible values are "Nominal" and "Degraded".
PROCESSOR_VERSION String The version of the software used for L2 processing, as a string of the form "major.minor.patch".
PRODUCT_ID String Id of the L2 product used to generate this asset.
PRODUCT_QUALITY String Indicator that specifies whether the product quality is degraded or not. Allowed values are "Degraded" and "Nominal".
SENSOR String Name of the sensor which acquired the data.
SPATIAL_RESOLUTION String Spatial resolution at nadir. For most products this is `3.5x7km2`, except for `L2__O3__PR`, which uses `28x21km2`, and `L2__CO____` and `L2__CH4___`, which both use `7x7km2`. This attribute originates from the CCI standard.
TIME_REFERENCE_DAYS_SINCE_1950 Int Days from 1 Jan 1950 to when the data was acquired.
TIME_REFERENCE_JULIAN_DAY Double The Julian day number when the data was acquired.
TRACKING_ID String UUID for the L2 product file.


数据提供:

The use of Sentinel data is governed by the Copernicus Sentinel Data Terms and Conditions.

代码:

var collection = ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_AER_AI')
  .select('absorbing_aerosol_index')
  .filterDate('2019-06-01', '2019-06-06');
var band_viz = {
  min: -1,
  max: 2.0,
  palette: ['black', 'blue', 'purple', 'cyan', 'green', 'yellow', 'red']
};
Map.addLayer(collection.mean(), band_viz, 'S5P Aerosol');
Map.setCenter(-118.82, 36.1, 5);


相关文章
|
4月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
1942 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
4月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
193 0
|
4月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
424 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
数据平台演进问题之数据的资产怎么被AI驱动的数据库理解
数据平台演进问题之数据的资产怎么被AI驱动的数据库理解
|
4月前
|
Cloud Native 关系型数据库 分布式数据库
数据之势丨云原生数据库,走向Serverless与AI驱动的一站式数据平台
在大模型席卷之下,历史的齿轮仍在转动,很多人开始思考,大模型能为数据库带来哪些改变。阿里云数据库产品事业部负责人李飞飞表示,数据库和智能化的结合是未来非常重要的发展方向,数据库的使用门槛将大幅降低。
|
数据采集 存储 人工智能
壳牌是如何成为一家数据和AI驱动的公司的?
作为一家全球性的能源和石化企业,壳牌(Shell)正在努力地以数据为驱动,推动业务发展,让数据科学变得和石油物理学一样重要。
|
3天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在现代医疗领域的革命性应用
随着人工智能技术的飞速发展,其在医疗领域的应用也日益广泛。本文将从AI技术在医疗诊断、治疗和健康管理等方面的应用入手,探讨其如何改变传统医疗模式,提高医疗服务质量和效率。同时,我们也将关注AI技术在医疗领域面临的挑战和未来发展趋势。
|
2天前
|
机器学习/深度学习 人工智能 编解码
深入探索AI文生语音技术的奥秘:从文本输入到逼真语音输出的全链条语音合成过程解析
【9月更文挑战第2天】深入探索AI文生语音技术的奥秘:从文本输入到逼真语音输出的全链条语音合成过程解析
 深入探索AI文生语音技术的奥秘:从文本输入到逼真语音输出的全链条语音合成过程解析
|
3天前
|
机器学习/深度学习 存储 人工智能
AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出
【9月更文挑战第1天】AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出
AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出
|
2天前
|
机器学习/深度学习 人工智能 自动驾驶
AI与未来:探索智能技术的新纪元
【9月更文挑战第9天】本文将探讨人工智能(AI)的发展历程、现状和未来趋势。我们将从AI的基本概念入手,逐步深入到其在各个领域的应用,以及它对社会的影响。最后,我们将展望AI的未来,探讨其可能带来的变革。

热门文章

最新文章