Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_O3) O3 浓度的实时高分辨率图像数据集

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_O3) O3 浓度的实时高分辨率图像数据集

NRTI/L3_O3

This dataset provides near-real-time high-resolution imagery of total column ozone concentrations. See also COPERNICUS/S5P/OFFL/L3_O3_TCL for the tropospheric column data.


In the stratosphere, the ozone layer shields the biosphere from dangerous solar ultraviolet radiation. In the troposphere, it acts as an efficient cleansing agent, but at high concentration it also becomes harmful to the health of humans, animals, and vegetation. Ozone is also an important greenhouse-gas contributor to ongoing climate change. Since the discovery of the Antarctic ozone hole in the 1980s and the subsequent Montreal Protocol regulating the production of chlorine-containing ozone-depleting substances, ozone has been routinely monitored from the ground and from space.


For this product, there are two algorithms that deliver total ozone: GDP for the near real-time and GODFIT for the offline products. GDP is currently being used for generating the operational total ozone products from GOME, SCIAMACHY and GOME-2; while GODFIT is being used in the ESA CCI and the Copernicus C3S projects. More information. Product user manual

NRTI/L3_O3


该数据集提供了总臭氧浓度的近实时高分辨率图像。另见 COPERNICUS/S5P/OFFL/L3_O3_TCL 了解对流层柱数据。


在平流层,臭氧层保护生物圈免受危险的太阳紫外线辐射。在对流层,它作为一种有效的清洁剂,但在高浓度下,它也会对人类、动物和植物的健康有害。臭氧也是导致持续气候变化的重要温室气体贡献者。自从 1980 年代发现南极臭氧空洞和随后的《蒙特利尔议定书》对含氯消耗臭氧层物质的生产进行了规定,臭氧已被定期从地面和空间监测。


对于该产品,有两种算法可以提供总臭氧:近实时的 GDP 和离线产品的 GODFIT。目前国内生产总值被用于生成来自国美、SCIAMACHY 和 GOME-2 的业务总臭氧产品;而 GODFIT 正在 ESA CCI 和 Copernicus C3S 项目中使用。更多信息。产品使用说明


NRTI L3 Product

To make our NRTI L3 products, we use harpconvert to grid the data.

The qa value is adjusted before running harpconvert to satisfy all of the following criteria:

  • ozone_total_vertical_column in [0, 0.45]
  • ozone_effective_temperature in [180, 260]
  • fitted_root_mean_square > 0.01

Example harpconvert invocation:

harpconvert --format hdf5 --hdf5-compression 9
-a 'O3_column_number_density_validity>50;derive(datetime_stop {time});
bin_spatial(2001, 50.000000, 0.01, 2001, -120.000000, 0.01);
keep(O3_column_number_density,O3_column_number_density_amf,
O3_slant_column_number_density,O3_effective_temperature,cloud_fraction,
sensor_azimuth_angle,sensor_zenith_angle,solar_azimuth_angle,
solar_zenith_angle)'
S5P_NRTI_L2__O3_____20180710T230038_20180710T230538_03840_01_010000_20180711T005227.nc
output.h5
  • Assets between the dates 2018-07-10 and 2018-07-18 are missing due to non-standard structure of product files.

Dataset Availability

2018-07-10T11:02:44 - 2021-09-05T00:00:00

Dataset Provider

European Union/ESA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_O3")

Resolution

0.01 degrees

Bands Table

Name Description Min* Max* Units
O3_column_number_density Total atmospheric column of O3 between the surface and the top of atmosphere, calculated with the [DOAS algorithm](http://projects.knmi.nl/omi/research/product/product_generator.php?info=algo&product=Ozone&flavour=OMDOAO3&long=DOAS%20Total%20Ozone%20column). 0.0047 0.272 mol/m^2
O3_column_number_density_amf Weighted mean of cloudy and clear air mass factor (amf) weighted by intensity-weighted cloud fraction. 1.92 6.83 mol/m^2
O3_slant_column_number_density O3 ring corrected slant column number density 0.014 1.402 mol/m^2
O3_effective_temperature Ozone cross section effective temperature -5962 936 K
cloud_fraction Effective cloud fraction. See the [Sentinel 5P L2 Input/Output Data Definition Spec](https://sentinels.copernicus.eu/documents/247904/3119978/Sentinel-5P-Level-2-Input-Output-Data-Definition), p.220. 0 1 fraction
sensor_azimuth_angle Azimuth angle of the satellite at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
sensor_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 0.098 66.44 degrees
solar_azimuth_angle Azimuth angle of the Sun at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
solar_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 8 80 degrees


* = Values are estimated

影像属性:

Name Type Description
ALGORITHM_VERSION String The algorithm version used in L2 processing. It's separate from the processor (framework) version, to accommodate different release schedules for different products.
BUILD_DATE String The date, expressed as milliseconds since 1 Jan 1970, when the software used to perform L2 processing was built.
HARP_VERSION Int The version of the HARP tool used to grid the L2 data into an L3 product.
INSTITUTION String The institution where data processing from L1 to L2 was performed.
L3_PROCESSING_TIME Int The date, expressed as milliseconds since 1 Jan 1970, when Google processed the L2 data into L3 using harpconvert.
LAT_MAX Double The maximum latitude of the asset (degrees).
LAT_MIN Double The minimum latitude of the asset (degrees).
LON_MAX Double The maximum longitude of the asset (degrees).
LON_MIN Double The minimum longitude of the asset (degrees).
ORBIT Int The orbit number of the satellite when the data was acquired.
PLATFORM String Name of the platform which acquired the data.
PROCESSING_STATUS String The processing status of the product on a global level, mainly based on the availability of auxiliary input data. Possible values are "Nominal" and "Degraded".
PROCESSOR_VERSION String The version of the software used for L2 processing, as a string of the form "major.minor.patch".
PRODUCT_ID String Id of the L2 product used to generate this asset.
PRODUCT_QUALITY String Indicator that specifies whether the product quality is degraded or not. Allowed values are "Degraded" and "Nominal".
SENSOR String Name of the sensor which acquired the data.
SPATIAL_RESOLUTION String Spatial resolution at nadir. For most products this is `3.5x7km2`, except for `L2__O3__PR`, which uses `28x21km2`, and `L2__CO____` and `L2__CH4___`, which both use `7x7km2`. This attribute originates from the CCI standard.
TIME_REFERENCE_DAYS_SINCE_1950 Int Days from 1 Jan 1950 to when the data was acquired.
TIME_REFERENCE_JULIAN_DAY Double The Julian day number when the data was acquired.
TRACKING_ID String UUID for the L2 product file.
STATUS_MET_2D String This dataset uses dynamic auxiliary weather data during L2 processing. This field has a value of "Nominal" if ECMWF dynamic auxiliary data was available or "Fallback" if not.


代码:

var collection = ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_O3')
  .select('O3_column_number_density')
  .filterDate('2019-06-01', '2019-06-05');
var band_viz = {
  min: 0.12,
  max: 0.15,
  palette: ['black', 'blue', 'purple', 'cyan', 'green', 'yellow', 'red']
};
Map.addLayer(collection.mean(), band_viz, 'S5P O3');
Map.setCenter(0.0, 0.0, 2);



相关文章
|
4月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
1942 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
4月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
424 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
4月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
71 0
|
4月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
100 0
|
4月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
59 0
|
4月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
174 0
|
4月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
88 0
|
4月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
99 0
|
4月前
|
编解码 定位技术
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
105 0
|
4月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
193 0

热门文章

最新文章