Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_AER_AI)紫外线气溶胶指数 (UVAI) 数据集

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_AER_AI)紫外线气溶胶指数 (UVAI) 数据集

OFFL/L3_AER_LH

This dataset provides offline high-resolution imagery of the UV Aerosol Index (UVAI), also called the Absorbing Layer Height (ALH).


The ALH is very sensitive to cloud contamination. However, aerosols and clouds can be difficult to distinguish, and ALH is computed for all FRESCO effective cloud fractions smaller than 0.05. Cloud masks are available from FRESCO and VIIRS, and are strongly recommended to filter for residual clouds. A sunglint mask is also available to screen sunglint regions, which are not filtered beforehand.

It is known that high surface albedos negatively influence the ALH, biasing the ALH towards the surface. In general, the ALH over (dark) oceans is considered reliable to within the requirement of 1000 m or 100 hPa. Over land, especially bright surfaces, the accuracy may be lower, and the use of the ALH product over bright surfaces like deserts is not advisable.


For this L3 AER_LH product, the aerosol_mid_pressure is calculated with a pair of measurements at the 354 nm and 388 nm wavelengths. The COPERNICUS/S5P/OFFL/L3_SO2 product has the absorbing_aerosol_index calculated using the 340 nm and 380 nm wavelengths.


该数据集提供了紫外线气溶胶指数 (UVAI) 的离线高分辨率图像,也称为吸收层高度 (ALH)。


ALH 对云污染非常敏感。然而,气溶胶和云很难区分,ALH 是针对所有小于 0.05 的 FRESCO 有效云分数计算的。 FRESCO 和 VIIRS 提供云遮罩,强烈建议过滤残留云。也可使用阳光遮罩来筛选未预先过滤的阳光区域。


众所周知,高表面反照率会对 ALH 产生负面影响,使 ALH 偏向表面。一般而言,(暗)海洋上的 ALH 在 1000 m 或 100 hPa 的要求内被认为是可靠的。在陆地上,尤其是在明亮的表面上,精度可能会较低,并且不建议在沙漠等明亮的表面上使用 ALH 产品。


对于此 L3 AER_LH 产品,使用 354 nm 和 388 nm 波长处的一对测量值计算 aerosol_mid_pressure。 COPERNICUS/S5P/OFFL/L3_SO2 产品具有使用 340 nm 和 380 nm 波长计算的吸收气溶胶指数。


OFFL L3 Product

To make our OFFL L3 products, we find areas within the product's bounding box with data using a command like this:

harpconvert --format hdf5 --hdf5-compression 9
-a 'aerosol_height_validity>50;derive(datetime_stop {time})'
S5P_OFFL_L2__AER_LH_20190404T042423_20190404T060554_07630_01_010300_20190410T062552.nc
grid_info.h5


We then merge all the data into one large mosaic (area-averaging values for pixels that may have different values for different times). From the mosaic, we create a set of tiles containing orthorectified raster data.


Example harpconvert invocation for one tile:

harpconvert --format hdf5 --hdf5-compression 9
-a 'aerosol_height_validity>50;derive(datetime_stop {time});
bin_spatial(2001, 50.000000, 0.01, 2001, -120.000000, 0.01);
keep(aerosol_height,aerosol_pressure,aerosol_optical_depth,
     sensor_zenith_angle,sensor_azimuth_angle,solar_azimuth_angle,solar_zenith_angle)'
S5P_OFFL_L2__AER_LH_20190404T042423_20190404T060554_07630_01_010300_20190410T062552.nc
output.h5


Sentinel-5 Precursor

Sentinel-5 Precursor is a satellite launched on 13 October 2017 by the European Space Agency to monitor air pollution. The onboard sensor is frequently referred to as Tropomi (TROPOspheric Monitoring Instrument).

All of the S5P datasets, except CH4, have two versions: Near Real-Time (NRTI) and Offline (OFFL). CH4 is available as OFFL only. The NRTI assets cover a smaller area than the OFFL assets, but appear more quickly after acquisition. The OFFL assets contain data from a single orbit (which, due to half the earth being dark, contains data only for a single hemisphere).

Because of noise on the data, negative vertical column values are often observed in particular over clean regions or for low SO2 emissions. It is recommended not to filter these values except for outliers, i.e. for vertical columns lower than -0.001 mol/m^2.

The original Sentinel 5P Level 2 (L2) data is binned by time, not by latitude/longitude. To make it possible to ingest the data into Earth Engine, each Sentinel 5P L2 product is converted to L3, keeping a single grid per orbit (that is, no aggregation across products is performed).

Source products spanning the antimeridian are ingested as two Earth Engine assets, with suffixes _1 and _2.

The conversion to L3 is done by the harpconvert tool using the bin_spatial operation. The source data is filtered to remove pixels with QA values less than:

  • 80% for AER_AI
  • 75% for the tropospheric_NO2_column_number_density band of NO2
  • 50% for all other datasets except for O3 and SO2

The O3_TCL product is ingested directly (without running harpconvert).

Dataset Availability

2018-07-04T13:34:21 - 2021-09-04T00:00:00

Dataset Provider

European Union/ESA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_AER_LH")

Resolution

0.01 degrees

Bands Table

Name Description Min* Max* Units
aerosol_height The aerosol layer pressure is converted into an aerosol layer altitude using an appropriate temperature profile, i.e. the temperature profile used in the retrieval. The value is given relative to the geoid. -78.91 69370.95 m
aerosol_pressure Pressure of an aerosol layer with an assumed pressure thickness of (currently) 50 hPa and a constant aerosol volume extinction coefficient and single scattering albedo. 2.06 103896.24 Pa
aerosol_optical_depth Aerosol optical thickness τ of the assumed aerosol layer. The optical thickness holds for 760 nm. -0.6 11.56 Pa
sensor_azimuth_angle Azimuth angle of the satellite at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
sensor_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 0.098 66.87 degrees
solar_azimuth_angle Azimuth angle of the Sun at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
solar_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 12.93 74.7 degrees

* = Values are estimated


影像属性:

Name Type Description
ALGORITHM_VERSION String The algorithm version used in L2 processing. It's separate from the processor (framework) version, to accommodate different release schedules for different products.
BUILD_DATE String The date, expressed as milliseconds since 1 Jan 1970, when the software used to perform L2 processing was built.
HARP_VERSION Int The version of the HARP tool used to grid the L2 data into an L3 product.
INSTITUTION String The institution where data processing from L1 to L2 was performed.
L3_PROCESSING_TIME Int The date, expressed as milliseconds since 1 Jan 1970, when Google processed the L2 data into L3 using harpconvert.
LAT_MAX Double The maximum latitude of the asset (degrees).
LAT_MIN Double The minimum latitude of the asset (degrees).
LON_MAX Double The maximum longitude of the asset (degrees).
LON_MIN Double The minimum longitude of the asset (degrees).
ORBIT Int The orbit number of the satellite when the data was acquired.
PLATFORM String Name of the platform which acquired the data.
PROCESSING_STATUS String The processing status of the product on a global level, mainly based on the availability of auxiliary input data. Possible values are "Nominal" and "Degraded".
PROCESSOR_VERSION String The version of the software used for L2 processing, as a string of the form "major.minor.patch".
PRODUCT_ID String Id of the L2 product used to generate this asset.
PRODUCT_QUALITY String Indicator that specifies whether the product quality is degraded or not. Allowed values are "Degraded" and "Nominal".
SENSOR String Name of the sensor which acquired the data.
SPATIAL_RESOLUTION String Spatial resolution at nadir. For most products this is `3.5x7km2`, except for `L2__O3__PR`, which uses `28x21km2`, and `L2__CO____` and `L2__CH4___`, which both use `7x7km2`. This attribute originates from the CCI standard.
TIME_REFERENCE_DAYS_SINCE_1950 Int Days from 1 Jan 1950 to when the data was acquired.
TIME_REFERENCE_JULIAN_DAY Double The Julian day number when the data was acquired.
TRACKING_ID String UUID for the L2 product file.


代码:

var collection = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_AER_LH')
                    .select('aerosol_height')
                    .filterDate('2019-06-01', '2019-06-05');
var visualization = {
  min: 0,
  max: 6000,
  palette: ['blue', 'purple', 'cyan', 'green', 'yellow', 'red']
};
Map.setCenter(44.09, 24.27, 4);
Map.addLayer(collection.mean(), visualization, 'S5P Aerosol Height');


相关文章
|
4天前
|
存储 人工智能 数据可视化
AI计算机视觉笔记二十一:PaddleOCR训练自定义数据集
在完成PaddleOCR环境搭建与测试后,本文档详细介绍如何训练自定义的车牌检测模型。首先,在`PaddleOCR`目录下创建`train_data`文件夹存放数据集,并下载并解压缩车牌数据集。接着,复制并修改配置文件`ch_det_mv3_db_v2.0.yml`以适应训练需求,包括设置模型存储目录、训练可视化选项及数据集路径。随后,下载预训练权重文件并放置于`pretrain_models`目录下,以便进行预测与训练。最后,通过指定命令行参数执行训练、断点续训、测试及导出推理模型等操作。
|
4天前
|
人工智能 数据处理 计算机视觉
AI计算机视觉笔记十六:yolov5训练自己的数据集
本文介绍了一种利用云服务器AutoDL训练疲劳驾驶行为检测模型的方法。由于使用本地CPU训练效率低下,作者选择了性价比高的AutoDL云服务器。首先,从网络获取了2000多张疲劳驾驶行为图片并使用labelimg软件进行标注。接着,详细介绍了在云服务器上创建实例、上传数据集和YOLOv5模型、修改配置文件以及开始训练的具体步骤。整个训练过程耗时约3小时,最终生成了可用于检测的模型文件。
|
1月前
|
人工智能 搜索推荐 语音技术
远程访问Voice Engine AI工具:无需公网IP,轻松实现高效创作
AI音频技术取得飞跃进展,OpenAI的Voice Engine能以短短15秒的音频样本生成高度真实的语音内容,广泛应用于有声书制作、视频翻译及帮助声音障碍者沟通。开源项目VALL-E-X亦能实现个性化跨语言语音合成。结合贝锐花生壳的内网穿透服务,用户可轻松实现AI工具的远程访问,无需复杂配置,极大提升了灵活性与效率。
64 1
|
2月前
|
存储 数据库 Android开发
🔥Android Jetpack全解析!拥抱Google官方库,让你的开发之旅更加顺畅无阻!🚀
【7月更文挑战第28天】在Android开发中追求高效稳定的路径?Android Jetpack作为Google官方库集合,是你的理想选择。它包含多个独立又协同工作的库,覆盖UI到安全性等多个领域,旨在减少样板代码,提高开发效率与应用质量。Jetpack核心组件如LiveData、ViewModel、Room等简化了数据绑定、状态保存及数据库操作。引入Jetpack只需在`build.gradle`中添加依赖。例如,使用Room进行数据库操作变得异常简单,从定义实体到实现CRUD操作,一切尽在掌握之中。拥抱Jetpack,提升开发效率,构建高质量应用!
49 4
|
3月前
|
Java 数据库连接
提升编程效率的利器: 解析Google Guava库之IO工具类(九)
提升编程效率的利器: 解析Google Guava库之IO工具类(九)
|
3月前
|
缓存 Java Maven
深入解析Google Guava库与Spring Retry重试框架
深入解析Google Guava库与Spring Retry重试框架
|
3天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在现代医疗领域的革命性应用
随着人工智能技术的飞速发展,其在医疗领域的应用也日益广泛。本文将从AI技术在医疗诊断、治疗和健康管理等方面的应用入手,探讨其如何改变传统医疗模式,提高医疗服务质量和效率。同时,我们也将关注AI技术在医疗领域面临的挑战和未来发展趋势。
|
2天前
|
机器学习/深度学习 人工智能 编解码
深入探索AI文生语音技术的奥秘:从文本输入到逼真语音输出的全链条语音合成过程解析
【9月更文挑战第2天】深入探索AI文生语音技术的奥秘:从文本输入到逼真语音输出的全链条语音合成过程解析
 深入探索AI文生语音技术的奥秘:从文本输入到逼真语音输出的全链条语音合成过程解析
|
3天前
|
机器学习/深度学习 存储 人工智能
AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出
【9月更文挑战第1天】AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出
AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出
|
2天前
|
机器学习/深度学习 人工智能 自动驾驶
AI与未来:探索智能技术的新纪元
【9月更文挑战第9天】本文将探讨人工智能(AI)的发展历程、现状和未来趋势。我们将从AI的基本概念入手,逐步深入到其在各个领域的应用,以及它对社会的影响。最后,我们将展望AI的未来,探讨其可能带来的变革。

热门文章

最新文章

推荐镜像

更多