☆打卡算法☆LeetCode 122. 买卖股票的最佳时机 II 算法解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: “给定一个数组,表示股票每天的价格,求得能获得的最大利润。”

一、题目


1、算法题目

“给定一个数组,表示股票每天的价格,求得能获得的最大利润。”

题目链接:

来源:力扣(LeetCode)

链接: 122. 买卖股票的最佳时机 II - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

给定一个数组 prices ,其中 prices[i] 表示股票第 i 天的价格。

在每一天,你可能会决定购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以购买它,然后在 同一天 出售。 返回 你能获得的 最大 利润 。

示例 1:
输入: prices = [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
     随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
复制代码
示例 2:
输入: prices = [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
     注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
复制代码


二、解题


1、思路分析

考虑到不能同时参与多笔交易,因此每天交易后手里只能有一只股票或没有股票的状态。

定义dp[i][0]表示第i天交易完成后的最大利润,dp[i][1]表示第i天交易完成后的最大利润,dp[i][j]表示到下标为i的这一天,持股状态为j时,手上拥有的最大现金数。

如果什么都不做也就是dp[0][0]=0,如果持有股票,当前拥有的现金数是当天股价的相反数,也就是dp[0][1]=-prices[i]。

因此,只需要从前往后依次计算状态即可,全部交易结束后,持有股票的收益一定地域不持有股票的收益,也就是dp[n-1][0]的收益大于dp[n-1][1],也就是最后的答案是dp[n-1][0]。


2、代码实现

代码参考:

class Solution {
    public int maxProfit(int[] prices) {
        int n = prices.length;
        int dp0 = 0, dp1 = -prices[0];
        for (int i = 1; i < n; ++i) {
            int newDp0 = Math.max(dp0, dp1 + prices[i]);
            int newDp1 = Math.max(dp1, dp0 - prices[i]);
            dp0 = newDp0;
            dp1 = newDp1;
        }
        return dp0;
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度 : O(n)

其中n是数组的长度。

空间复杂度: O(n)

只需要开辟O(n)的空间存储动态规划中的所有状态。


三、总结

注意到上面的状态转移方程中,每一天的状态之和前一天的状态有关。

因此不必要储存更早的状态,只需要将dp[i-1][0]和dp[i-1][1]存放到两个变量中。

计算出dp[i][0]和dp[i][1]并存回对应的边阿玲,以便于第i+1天的状态转移即可。



相关文章
|
1月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
48 0
|
1月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
41 3
|
1月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
38 0
|
1月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
13天前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
16天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
52 4
|
17天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
1月前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
24 2
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-RMSprop算法解析
关注B站【肆十二】,观看更多实战教学视频。本期介绍深度学习中的RMSprop优化算法,通过调整每个参数的学习率来优化模型训练。示例代码使用PyTorch实现,详细解析了RMSprop的参数及其作用。适合初学者了解和实践。
37 1
|
1月前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。