☆打卡算法☆LeetCode 116、 填充每个节点的下一个右侧节点指针 算法解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: “给定一个完美二叉树,填充它的每个next指针,让这个指针指向其下一个右侧节点。”

一、题目


1、算法题目

“给定一个完美二叉树,填充它的每个next指针,让这个指针指向其下一个右侧节点。”

题目链接:

来源:力扣(LeetCode)

链接:   116. 填充每个节点的下一个右侧节点指针


2、题目描述

给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}
复制代码

填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。

初始状态下,所有 next 指针都被设置为 NULL。

网络异常,图片无法展示
|

示例 1:
输入:root = [1,2,3,4,5,6,7]
输出:[1,#,2,3,#,4,5,6,7,#]
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化的输出按层序遍历排列,同一层节点由 next 指针连接,'#' 标志着每一层的结束。
复制代码
示例 2:
输入: root = []
输出: []
复制代码


二、解题


1、思路分析

题目的题意是要求我们将二叉树的每一层节点都连接起来形成一个链表。

因此比较直接的方法就是层次遍历,在层次遍历的过程中,将二叉树的每一层节点取出来遍历并链接。

层次遍历基于广度优先搜索算法,广度优先搜索算法每次会取出一个节点来拓展,而层次遍历会每次将队列中的所有元素都拿出来拓展。

层次遍历可以保证每次从队列中拿出来遍历的元素都是基于同一层的。


2、代码实现

代码参考:

class Solution {
    public Node connect(Node root) {
        if (root == null) {
            return root;
        }
        // 初始化队列同时将第一层节点加入队列中,即根节点
        Queue<Node> queue = new LinkedList<Node>(); 
        queue.add(root);
        // 外层的 while 循环迭代的是层数
        while (!queue.isEmpty()) {
            // 记录当前队列大小
            int size = queue.size();
            // 遍历这一层的所有节点
            for (int i = 0; i < size; i++) {
                // 从队首取出元素
                Node node = queue.poll();
                // 连接
                if (i < size - 1) {
                    node.next = queue.peek();
                }
                // 拓展下一层节点
                if (node.left != null) {
                    queue.add(node.left);
                }
                if (node.right != null) {
                    queue.add(node.right);
                }
            }
        }
        // 返回根节点
        return root;
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度 : O(N)

每个节点都会被访问一次且只会被访问一次,所以时间复杂度为O(N)。

空间复杂度: O(N)

广度优先遍历算法的复杂度取决于一个层级上的最大元素数量,这种情况下空间复杂度为O(N)。


三、总结

当然这一题还可以使用已经建立的next指针。

在一棵树中,存在两种类型的next指针:

  • 连接同一个父节点的两个子节点,可以通过同一个节点访问到。
  • 不同父节点的子节点之间建立连接。

如果每个节点有指向父节点的指针,就可以通过该指针找到next节点。



相关文章
|
1月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
48 0
|
1月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
41 3
|
1月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
16天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
52 4
|
17天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-RMSprop算法解析
关注B站【肆十二】,观看更多实战教学视频。本期介绍深度学习中的RMSprop优化算法,通过调整每个参数的学习率来优化模型训练。示例代码使用PyTorch实现,详细解析了RMSprop的参数及其作用。适合初学者了解和实践。
37 1
|
1月前
|
搜索推荐 Shell
解析排序算法:十大排序方法的工作原理与性能比较
解析排序算法:十大排序方法的工作原理与性能比较
51 9
|
1月前
LeetCode第二十四题(两两交换链表中的节点)
这篇文章介绍了LeetCode第24题的解法,即如何通过使用三个指针(preNode, curNode, curNextNode)来两两交换链表中的节点,并提供了详细的代码实现。
18 0
LeetCode第二十四题(两两交换链表中的节点)
|
1月前
Leetcode第十九题(删除链表的倒数第N个节点)
LeetCode第19题要求删除链表的倒数第N个节点,可以通过快慢指针法在一次遍历中实现。
44 0
Leetcode第十九题(删除链表的倒数第N个节点)
|
1月前
|
搜索推荐 算法 数据可视化
深入解析冒泡排序算法
深入解析冒泡排序算法
33 4

推荐镜像

更多