☆打卡算法☆LeetCode 72、编辑距离 算法解析

简介: “给定两个单词,计算出单词1转换为单词2所最少操作数。”

一、题目


1、算法题目

“给定两个单词,计算出单词1转换为单词2所最少操作数。”

题目链接:

来源:力扣(LeetCode)

链接:72. 编辑距离 - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符
示例 1:
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
复制代码
示例 2:
输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
复制代码


二、解题


1、思路分析

找出所有解,可以用动态规划。

对于任意一个单词进行插入删除替换操作,转换成第二个单词即可。


2、代码实现

代码参考:

public class Solution {
    public int MinDistance(string w1, string w2) {
        //【dp数组定义】w1转为w2所需的最小操作数
        int[,] dp = new int[w1.Length + 1, w2.Length + 1];
        //【初始化】
        for (int i = 0; i <= w1.Length; i++) dp[i, 0] = i;
        for (int j = 0; j <= w2.Length; j++) dp[0, j] = j;
        //【状态转移】
        for (int i = 1; i <= w1.Length; i++)
        {
            for (int j = 1; j <= w2.Length; j++)
            {
                if (w1[i - 1] == w2[j - 1])
                    //如果最后一位相等,最少操作数无影响
                    dp[i, j] = dp[i - 1, j - 1];
                else
                    //如果不相等,到d[i,j]一共有3种状态,取最小:替换、w1新增w2的最后1位、w2新增w1的最后1位
                    dp[i, j] = Math.Min(dp[i - 1, j - 1], Math.Min(dp[i - 1, j], dp[i, j - 1])) + 1;
            }
        }
        return dp[w1.Length, w2.Length];
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度 : O(n)

其中n是数组的长度,只需要遍历一遍数组即可求得答案。

空间复杂度: O(1)

只需要常数级别的空间存放变量。


三、总结

1.选择什么套路来做?题目是序列的处理问题,一般带有“最少”“最多”“最大”“子序列”等可以一步步解决的字符串或数组问题,可以考虑用DP,2个序列的比较,用dp[i,j]二维数组;

2.再想DP数组的含义是什么,一般就是按问题描述,比如本题dp[i,i]就是将长度为i的word1 转换成长度为j的word2 所使用的最少操作数;

3.既然使用了dp[i,j],就要想这种状态是怎么得来的,即状态转移方程,就要分情况了,一般是先比较两个序列的最后1位,是否相等,针对本题:

如果最后1位相等:则删除或新增这1位,对最少操作数没有影响,即dp[i,j] = dp[i-1,j-1];

如果最后1位不相等,如何让它们相等?有下面这几种情况:

  • Ⅰ:替换最后1位,无论替换哪个操作数都是1:dp[i,j] = dp[i-1,j-1]+1;
  • Ⅱ:第1个数组新增1位,使最后1位与第2个数组的最后1位相等:dp[i,j] = dp[i-1,j]+1;
  • Ⅲ:第2个数组新增1位,使最后1位于第1个数组的最后1位相等:dp[i,j] = dp[i,j-1]+1;

同时,时刻想清楚dp[i,j]、dp[i-1,j-1]、dp[i-1,j-1]、dp[i,j-1]的含义即可。



相关文章
|
22天前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
311 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
1月前
|
机器学习/深度学习 存储 算法
动态规划算法深度解析:0-1背包问题
0-1背包问题是经典的组合优化问题,目标是在给定物品重量和价值及背包容量限制下,选取物品使得总价值最大化且每个物品仅能被选一次。该问题通常采用动态规划方法解决,通过构建二维状态表dp[i][j]记录前i个物品在容量j时的最大价值,利用状态转移方程避免重复计算子问题,从而高效求解最优解。
274 1
|
1月前
|
算法 搜索推荐 Java
贪心算法:部分背包问题深度解析
该Java代码基于贪心算法求解分数背包问题,通过按单位价值降序排序,优先装入高价值物品,并支持部分装入。核心包括冒泡排序优化、分阶段装入策略及精度控制,体现贪心选择性质,适用于可分割资源的最优化场景。
178 1
贪心算法:部分背包问题深度解析
|
1月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
1月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
机器学习/深度学习 算法 自动驾驶
232 0
|
1月前
|
机器学习/深度学习 人工智能 资源调度
大语言模型的核心算法——简要解析
大语言模型的核心算法基于Transformer架构,以自注意力机制为核心,通过Q、K、V矩阵动态捕捉序列内部关系。多头注意力增强模型表达能力,位置编码(如RoPE)解决顺序信息问题。Flash Attention优化计算效率,GQA平衡性能与资源消耗。训练上,DPO替代RLHF提升效率,MoE架构实现参数扩展,Constitutional AI实现自监督对齐。整体技术推动模型在长序列、低资源下的性能突破。
266 8
|
1月前
|
算法 API 数据安全/隐私保护
深度解析京东图片搜索API:从图像识别到商品匹配的算法实践
京东图片搜索API基于图像识别技术,支持通过上传图片或图片URL搜索相似商品,提供智能匹配、结果筛选、分页查询等功能。适用于比价、竞品分析、推荐系统等场景。支持Python等开发语言,提供详细请求示例与文档。
|
3月前
|
机器学习/深度学习 人工智能 编解码
AI视觉新突破:多角度理解3D世界的算法原理全解析
多视角条件扩散算法通过多张图片输入生成高质量3D模型,克服了单图建模背面细节缺失的问题。该技术模拟人类多角度观察方式,结合跨视图注意力机制与一致性损失优化,大幅提升几何精度与纹理保真度,成为AI 3D生成的重要突破。
249 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习模型、算法与应用的全方位解析
深度学习,作为人工智能(AI)的一个重要分支,已经在多个领域产生了革命性的影响。从图像识别到自然语言处理,从语音识别到自动驾驶,深度学习无处不在。本篇博客将深入探讨深度学习的模型、算法及其在各个领域的应用。
581 3

热门文章

最新文章

推荐镜像

更多
  • DNS