HMAC算法及其应用

简介: HMAC算法及其应用

HMAC算法及其应用



MAC


在现代的网络中,身份认证是一个经常会用到的功能,在身份认证过程中,有很多种方式可以保证用户信息的安全,而MAC(message authentication code)就是一种常用的方法。


消息认证码是对消息进行认证并确认其完整性的技术。通过使用发送者和接收者之间共享的密钥,就可以识别出是否存在伪装和篡改行为。


MAC是通过MAC算法+密钥+要加密的信息一起计算得出的。


同hash算法(消息摘要)相比,消息摘要只能保证消息的完整性,即该消息摘要B是这个消息A生成的。而MAC算法能够保证消息的正确性,即判断确实发的是消息A而不是消息C。


同公私钥体系相比,因为MAC的密钥在发送方和接收方是一样的,所以发送方和接收方都可以来生成MAC,而公私钥体系因为将公钥和私钥分开,所以增加了不可抵赖性。


MAC有很多实现方式,比较通用的是基于hash算法的MAC,比如今天我们要讲的HMAC。还有一种是基于分组密码的实现,比如(OMAC, CBC-MAC and PMAC)。


HMAC


HMAC 是Keyed-Hashing for Message Authentication的缩写。HMAC的MAC算法是hash算法,它可以是MD5, SHA-1或者 SHA-256,他们分别被称为HMAC-MD5,HMAC-SHA1, HMAC-SHA256。


HMAC用公式表示:


H(K XOR opad, H(K XOR ipad, text))


其中


H:hash算法,比如(MD5,SHA-1,SHA-256)


B:块字节的长度,块是hash操作的基本单位。这里B=64。


L:hash算法计算出来的字节长度。(L=16 for MD5, L=20 for SHA-1)。


K:共享密钥,K的长度可以是任意的,但是为了安全考虑,还是推荐K的长度>B。当K长度大于B时候,会先在K上面执行hash算法,将得到的L长度结果作为新的共享密钥。


如果K的长度<B, 那么会在K后面填充0x00一直到等于长度B。


text: 要加密的内容


opad:外部填充常量,是 0x5C 重复B次。


ipad: 内部填充常量,是0x36 重复B次。


XOR: 异或运算。


计算步骤如下:


  1. 将0x00填充到K的后面,直到其长度等于B。
  2. 将步骤1的结果跟 ipad做异或。
  3. 将要加密的信息附在步骤2的结果后面。
  4. 调用H方法。
  5. 将步骤1的结果跟opad做异或。
  6. 将步骤4的结果附在步骤5的结果后面。
  7. 调用H方法。


HMAC的应用


hmac主要应用在身份验证中,如下是它的使用过程:


  1. 客户端发出登录请求(假设是浏览器的GET请求)
  2. 服务器返回一个随机值,并在会话中记录这个随机值
  3. 客户端将该随机值作为密钥,用户密码进行hmac运算,然后提交给服务器
  4. 服务器读取用户数据库中的用户密码和步骤2中发送的随机值做与客户端一样的hmac运算,然后与用户发送的结果比较,如果结果一致则验证用户合法。


在这个过程中,可能遭到安全攻击的是服务器发送的随机值和用户发送的hmac结果,而对于截获了这两个值的黑客而言这两个值是没有意义的,绝无获取用户密码的可能性,随机值的引入使hmac只在当前会话中有效,大大增强了安全性和实用性。


HMAC实现举例


/*
** Function: hmac_md5
*/
void
hmac_md5(text, text_len, key, key_len, digest)
unsigned char*  text;                /* pointer to data stream */
int             text_len;            /* length of data stream */
unsigned char*  key;                 /* pointer to authentication key */
int             key_len;             /* length of authentication key */
caddr_t         digest;              /* caller digest to be filled in */
{
        MD5_CTX context;
        unsigned char k_ipad[65];    /* inner padding -
                                      * key XORd with ipad
                                      */
        unsigned char k_opad[65];    /* outer padding -
                                      * key XORd with opad
                                      */
        unsigned char tk[16];
        int i;
        /* if key is longer than 64 bytes reset it to key=MD5(key) */
        if (key_len > 64) {
                MD5_CTX      tctx;
                MD5Init(&tctx);
                MD5Update(&tctx, key, key_len);
                MD5Final(tk, &tctx);
                key = tk;
                key_len = 16;
        }
        /*
         * the HMAC_MD5 transform looks like:
         *
         * MD5(K XOR opad, MD5(K XOR ipad, text))
         *
         * where K is an n byte key
         * ipad is the byte 0x36 repeated 64 times
       * opad is the byte 0x5c repeated 64 times
         * and text is the data being protected
         */
        /* start out by storing key in pads */
        bzero( k_ipad, sizeof k_ipad);
        bzero( k_opad, sizeof k_opad);
        bcopy( key, k_ipad, key_len);
        bcopy( key, k_opad, key_len);
        /* XOR key with ipad and opad values */
        for (i=0; i<64; i++) {
                k_ipad[i] ^= 0x36;
                k_opad[i] ^= 0x5c;
        }
        /*
         * perform inner MD5
         */
        MD5Init(&context);                   /* init context for 1st
                                              * pass */
        MD5Update(&context, k_ipad, 64)      /* start with inner pad */
        MD5Update(&context, text, text_len); /* then text of datagram */
        MD5Final(digest, &context);          /* finish up 1st pass */
        /*
         * perform outer MD5
         */
        MD5Init(&context);                   /* init context for 2nd
                                              * pass */
        MD5Update(&context, k_opad, 64);     /* start with outer pad */
        MD5Update(&context, digest, 16);     /* then results of 1st
                                              * hash */
        MD5Final(digest, &context);          /* finish up 2nd pass */
}
相关文章
|
4月前
|
存储 监控 JavaScript
基于布隆过滤器的 Node.js 算法在局域网电脑桌面监控设备快速校验中的应用研究
本文探讨了布隆过滤器在局域网电脑桌面监控中的应用,分析其高效空间利用率、快速查询性能及动态扩容优势,并设计了基于MAC地址的校验模型,提供Node.js实现代码,适用于设备准入控制与重复数据过滤场景。
209 0
|
3月前
|
运维 监控 JavaScript
基于 Node.js 图结构的局域网设备拓扑分析算法在局域网内监控软件中的应用研究
本文探讨图结构在局域网监控系统中的应用,通过Node.js实现设备拓扑建模、路径分析与故障定位,提升网络可视化、可追溯性与运维效率,结合模拟实验验证其高效性与准确性。
248 3
|
3月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
3月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
3月前
|
机器学习/深度学习 算法 安全
小场景大市场:猫狗识别算法在宠物智能设备中的应用
将猫狗识别算法应用于宠物智能设备,是AIoT领域的重要垂直场景。本文从核心技术、应用场景、挑战与趋势四个方面,全面解析这一融合算法、硬件与用户体验的系统工程。
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习模型、算法与应用的全方位解析
深度学习,作为人工智能(AI)的一个重要分支,已经在多个领域产生了革命性的影响。从图像识别到自然语言处理,从语音识别到自动驾驶,深度学习无处不在。本篇博客将深入探讨深度学习的模型、算法及其在各个领域的应用。
1009 3
|
5月前
|
机器学习/深度学习 人工智能 算法
AI-Compass 强化学习模块:理论到实战完整RL技术生态,涵盖10+主流框架、多智能体算法、游戏AI与金融量化应用
AI-Compass 强化学习模块:理论到实战完整RL技术生态,涵盖10+主流框架、多智能体算法、游戏AI与金融量化应用
|
5月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
171 1
|
4月前
|
算法 数据可视化
matlab版本粒子群算法(PSO)在路径规划中的应用
matlab版本粒子群算法(PSO)在路径规划中的应用
|
5月前
|
存储 监控 算法
公司员工泄密防护体系中跳表数据结构及其 Go 语言算法的应用研究
在数字化办公中,企业面临员工泄密风险。本文探讨使用跳表(Skip List)数据结构优化泄密防护系统,提升敏感数据监测效率。跳表以其高效的动态数据处理能力,为企业信息安全管理提供了可靠技术支持。
137 0

热门文章

最新文章