帅到爆炸!使用管道 Pipe 编写 Python 代码竟如此简洁

简介: 众所周知,Pytnon 非常擅长处理数据,尤其是后期数据的清洗工作。今天派森酱就给大家介绍一款处理数据的神器 Pipe。

什么是 Pipe

简言之,Pipe 是 Python 的一个三方库。

通过 Pipe 我们可以将一个函数的处理结果传递给另外一个函数,这意味着你的代码会非常简洁。

要使用 Pipe 需要提前安装,直接使用 pip 安装即可。

pip install pipe

过滤元素

和 filter 类似,pipe 中的 where 操作可以过滤可迭代对象中的元素。

In [5]: numbers = [0, 1, 2, 3, 4, 5]
In [6]: list(numbers | where(lambda x: x % 2 == 0))
Out[6]: [0, 2, 4]

作用元素

类似 map,select 操作可以将函数作用于可迭代对象中的每个元素。下面的例子中我们将列表中的元素都扩大 2 倍。

In [8]: list(numbers | select(lambda x: x * 2))
Out[8]: [0, 2, 4, 6, 8, 10]

当然,还可以将多种操作合并在一起来玩。

下面的例子就是将列表中的偶数挑选出来并扩大 2 倍,和 filter 与 map 不同的是,pipe 可以将多个操作连接起来,就像水管套水管一样,所以我想管道这个名字也是很接地气了。

In [10]: list(numbers
    ...:     | where(lambda x: x % 2 == 0)
    ...:     | select(lambda x: x * 2)
    ...:    )
    ...:
Out[10]: [0, 4, 8]

连接元素

操作嵌套列表时非常痛苦,值得高兴的是 pipe 给出了很友好的接口,只需要 chain 一下即可。

In [11]: list([[1, 2], [3, 4], [5]] | chain)
Out[11]: [1, 2, 3, 4, 5]
In [30]: list((1, 2, 3) | chain_with([4, 5], [6]))
Out[30]: [1, 2, 3, 4, 5, 6]
In [31]: list((1, 2, 3) | chain_with([4, 5], [6,[7]]))
Out[31]: [1, 2, 3, 4, 5, 6, [7]]

如你所见,chain 只可以拆开一层,如果要拆开多层嵌套的话,不要慌,traverse 轻松搞定。

In [12]: list([[1, 2], [[[3], [[4]]], [5]]] | traverse)
Out[12]: [1, 2, 3, 4, 5]

结合 select 一起,获取字典中的某个字段属性集合。

In [32]: fruits = [
    ...:     {"name": "apple", "price": [2, 5]},
    ...:     {"name": "orange", "price": 4},
    ...:     {"name": "grape", "price": 5},
    ...: ]
In [33]: list(fruits
    ...:      | select(lambda fruit: fruit["price"])
    ...:      | traverse)
    ...:
Out[33]: [2, 5, 4, 5]

分组

对列表中的元素进行分组是必不可少的,在 pipe 中可以使用 groupby 来完成。

In [26]: list(numbers
    ...:      | groupby(lambda x: 'Even' if x % 2 == 0 else 'Odd')
    ...:      | select(lambda x: {x[0]: list(x[1])})
    ...:     )
    ...:
Out[26]: [{'Even': [0, 2, 4]}, {'Odd': [1, 3, 5]}]

同样,还可以在 select 中添加 where 过滤条件。

In [27]: list(numbers
    ...:      | groupby(lambda x: 'Even' if x % 2 == 0 else 'Odd')
    ...:      | select(lambda x: {x[0]: list(x[1] | where(lambda x: x > 2))})
    ...:     )
    ...:
Out[27]: [{'Even': [4]}, {'Odd': [3, 5]}]

行列互换

数据处理中时常会用到行列互相转换,尤其是在用 DataFrame 时,使用 pipe 一行代码搞定行列转换。

In [24]: [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | transpose
Out[24]: [(1, 4, 7), (2, 5, 8), (3, 6, 9)]

删除元素

对列表去重也是一项常用的操作,在 pipe 中使用 dedup 来对列表进行去重。

In [28]: list([1, 1, 2, 2, 3, 3, 1, 2, 3] | dedup)
Out[28]: [1, 2, 3]

与 dedup 不同的是,uniq 只会对连续的重复元素保留一个,非连续重复元素则不过滤。

In [29]: list([1, 1, 2, 2, 3, 3, 1, 2, 3] | uniq)
Out[29]: [1, 2, 3, 1, 2, 3]

总结

今天派森酱给大家介绍了一个处理数据的神器,使用管道可以让繁琐的操作浓缩在几行甚至一行代码搞定,提高可读性的同时还提升了代码的整洁程度,美滋滋~

目录
相关文章
|
16天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
14天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
26天前
|
机器学习/深度学习 数据挖掘 程序员
探索Python编程:从基础到进阶的旅程
在这篇文章中,我们将一同踏上一场激动人心的Python编程之旅。无论你是初学者还是有一定经验的开发者,这里都有适合你的内容。文章分为三个部分:首先是“启程前的准备”,我们会介绍Python的安装和基本工具;其次是“旅途中的风景”,将通过实际代码示例深入探讨Python的核心概念;最后,“到达目的地”会带你了解如何将所学知识应用于实际项目。让我们开始吧!
|
3天前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
97 80
|
21天前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
133 59
|
1天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
14 2
|
15天前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
41 10
|
18天前
|
机器学习/深度学习 人工智能 Java
Python 语言:强大、灵活与高效的编程之选
本文全面介绍了 Python 编程语言,涵盖其历史、特点、应用领域及核心概念。从 1989 年由 Guido van Rossum 创立至今,Python 凭借简洁的语法和强大的功能,成为数据科学、AI、Web 开发等领域的首选语言。文章还详细探讨了 Python 的语法基础、数据结构、面向对象编程等内容,旨在帮助读者深入了解并有效利用 Python 进行编程。
|
17天前
|
机器学习/深度学习 人工智能 数据挖掘
探索Python编程的奥秘
在数字世界的海洋中,Python如同一艘灵活的帆船,引领着无数探险者穿梭于数据的波涛之中。本文将带你领略Python编程的魅力,从基础语法到实际应用,一步步揭开Python的神秘面纱。
37 12
|
16天前
|
IDE 程序员 开发工具
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!
下一篇
DataWorks