Java8 的 G1 垃圾回收器相对于之前的 CMS 有什么特别的呢?

简介: CMS 垃圾回收器,全称 Concurrent Mark Sweep 并发标记-清除,从名字上面我们也可以看出这个垃圾回收器是基于标记清除算法实现的。首先"并发"表示 GC 线程可以和用户线程并发执行,同时既然是标记-清除算法,说明这个垃圾回收器会产生很多碎片,这是标记-清除算法的缺点。同时 CMS 是作用于老年代的,老年代的垃圾回收频率相对年轻代会低一点。

CMS

CMS 垃圾回收器,全称 Concurrent Mark Sweep 并发标记-清除,从名字上面我们也可以看出这个垃圾回收器是基于标记清除算法实现的。首先"并发"表示 GC 线程可以和用户线程并发执行,同时既然是标记-清除算法,说明这个垃圾回收器会产生很多碎片,这是标记-清除算法的缺点。同时 CMS 是作用于老年代的,老年代的垃圾回收频率相对年轻代会低一点。

CMS 的垃圾回收有四个过程

  1. 初始标记:
  2. 并发标记:
  3. 重新标记:
  4. 并发清除:

初始标记的时候是一个 STW (stop the world)的过程,所有的用户线程都会停止,这个时候只是标记一下 GC Roots 能直接达到的对象,由于只是标记一层所以整个速度相对会比较快。

并发标记是一个 GC Roots 扫描的过程,会扫描整个链路标记可以回收的对象;由于整个的链路会比较长,所以相对会耗时久一点,不过由于这个过程是并发的,所以对用户线程运行是没有影响的。

重新标记顾名思义是一个再次标记的过程,同时也是会 STW,之所以会有这个重新标记的过程,是因为在上一步并发标记的过程中,用户线程依旧在运行,所以对象的引用关系会发生变化同时在运行的时候也会产生新的垃圾。这里只会标记在上一步有发生变化的对象,虽然会 STW 不过速度也较快。

并发清除是最后一个阶段,这个阶段由于需要清除之前扫描的所有垃圾对象,所以会相对比较耗时,不过这个阶段是可以并发进行的所以对用户线程的运行不会有影响。

经过上面的四个过程就完成了一次完整的 GC,前面我们提到整个 CMS 垃圾回收器是基于标记-清除算法的,先通过三个过程标记出需要清理的对象,然后再进行清理。整个过程中初始标记和重新标记会触发 STW,其他两个阶段是并发进行的。标记-清除算法会产生内存碎片,所以不适合需要频繁回收的年轻代,所以只适合老年代。产生碎片是 CMS 的缺点,并发是 CMS 的优点,毕竟任何一个收集器都会有优缺点。

G1

前面我们聊完了 CMS,接下来我们聊一下 G1G1 全称 Garbage First,在讲 G1 垃圾回收器的细节之前,我们首先要知道的是 G1 对整个堆的空间做了重新的定义。G1 中的老年代和年轻代已经不再是物理隔离的了,而是逻辑隔离。在 G1 中整个堆空间被分成了一个个相同大小的 Region 块,多个 Region 块在逻辑上组成了年轻代和老年代。

这样做的目的是因为在进行垃圾回收的时候不需要进行整个堆空间的扫描,同时可以根据指定停顿时间来进行垃圾回收。G1 会将每个 Region 的回收成本进行量化,从而达到一个成本控制,可以在限定的停顿时间内完成回收,这是 G1 的最大的特点。

G1 回收也分为四个过程:

  1. 初始标记:初始标记与 CMS 也是只扫描 GC Roots 直达的对象,这阶段同样也要 STW,不过时间也很短;
  2. 并发标记:从 GC Roots 开始堆中对象进行可达性分析,找出存活的对象,这个阶段耗时较长,但是可以与用户程序并发执行;
  3. 最终标记:最终标记和 CMS 的重新标记的思路一直,也是为了修正并发标记期间由于用户程序并发运行而导致标记产生变动的那一部分对象,不过不同的是 G1 会将这段时间对象变化记录在线程 Remembered Set Logs 里面,最终标记阶段需要把 Remembered Set Logs 的数据合并到 Remembered Set 中,这个阶段需要停顿线程,不过是可并行执行;
  4. 筛选回收:最后一步筛选回收是 G1CMS 最大的不同之处,G1 首先会对各个需要回收的 Region 代价进行量化和排序,在结合用户所期望的 GC 停顿时间来制定回收计划,通过-XX:MaxGCPauseMillis 参数来指定期望的回收时间。这个阶段也可以做到与用户程序一起并发执行,但是因为只回收一部分 Region,时间是用户可控制的,而且停顿用户线程将大幅提高收集效率。

上面提到了一个 Remembered Set 记忆集,是用来记录对象引用的,在并发标记的时候有对象引用发生变更的时候会记录到这里,等到最终标记的时候进行修正。整体上来看 G1 采用的是标记-整理的算法来进行垃圾回收,也不会像 CMS 那样会产生内容碎片,所以 G1 同时可以进行年轻代和老年代的垃圾回收,相比 CMS 会更灵活一点,而且也因为 G1 将内存划分成 Region 了,也不会造成复制算法带来的空间浪费的问题。

总结

首先CMS 和 G1 都是并发和分代的垃圾回收器,并且都是低延迟的;CMS 是基于标记-清除算法的,只适合在老年代使用,不可预测停顿时间,同时年轻代和老年代是物理隔离的。G1 是基于标记-整理的高吞吐,可预测停顿时间的垃圾回收器,可以同时使用在年轻代和老年代,同时年轻代和老年代是逻辑隔离的。

特点 G1 CMS
算法 标记-整理 标记-清除
年轻代和老年代隔离方式 逻辑隔离 物理隔离
停顿时间可预测行
并发和分代 支持 支持
吞吐量
使用场景 年轻代,老年代 老年代
低延时


相关文章
|
1天前
|
存储 算法 Java
性能优化:Java垃圾回收机制深度解析 - 让你的应用飞起来!
Java垃圾回收自动管理内存,防止泄漏,提升性能。GC分为标记-清除、复制、标记-整理和分代收集等算法。JVM内存分为堆、方法区等区域。常见垃圾回收器有Serial、Parallel、CMS和G1。调优涉及选择合适的GC、调整内存大小和使用参数。了解和优化GC能提升应用性能。
11 3
|
5天前
|
监控 算法 Java
Java中的垃圾回收机制详解
本文旨在深入探讨Java中的垃圾回收机制,揭示其工作原理、主要算法及其在性能优化中的重要性。通过详细的分析,我们将理解如何利用垃圾回收来管理内存资源,提高应用程序的稳定性和效率。
|
2天前
|
Java
Java垃圾回收器:版本差异、使用技巧与最佳实践
Java垃圾回收器:版本差异、使用技巧与最佳实践
8 1
|
10天前
|
监控 算法 Java
Java虚拟机(JVM)使用多种垃圾回收算法来管理内存,以确保程序运行时不会因为内存不足而崩溃。
【6月更文挑战第20天】Java JVM运用多种GC算法,如标记-清除、复制、标记-压缩、分代收集、增量收集、并行收集和并发标记,以自动化内存管理,防止因内存耗尽导致的程序崩溃。这些算法各有优劣,适应不同的性能和资源需求。垃圾回收旨在避免手动内存管理,简化编程。当遇到内存泄漏,可以借助VisualVM、JConsole或MAT等工具监测内存、生成堆转储,分析引用链并定位泄漏源,从而解决问题。
24 4
|
12天前
|
算法 Java
Java垃圾回收(Garbage Collection,GC)是Java虚拟机(JVM)的一种自动内存管理机制,用于在运行时自动回收不再使用的对象所占的内存空间
【6月更文挑战第18天】Java的GC自动回收内存,包括标记清除(产生碎片)、复制(效率低)、标记整理(兼顾连续性与效率)和分代收集(区分新生代和老年代,用不同算法优化)等策略。现代JVM通常采用分代收集,以平衡性能和内存利用率。
38 3
|
16天前
|
存储 监控 算法
深入理解Java的垃圾回收机制(GC)实现原理
深入理解Java的垃圾回收机制(GC)实现原理
24 1
|
3天前
|
监控 Java 程序员
Java中的垃圾回收机制:原理与优化实践
在Java编程语言中,垃圾回收(Garbage Collection, GC)是内存管理的关键组成部分。本文章深入探讨了Java垃圾回收的工作原理、常见的垃圾回收器类型及其特点,以及如何监控和优化垃圾回收性能。通过引用最新的研究成果和官方文档,本文旨在为Java开发者提供一套系统的垃圾回收知识体系,帮助他们更好地理解和掌握这一核心技术。
|
4天前
|
监控 算法 Java
掌握Java内存管理:对象生命周期与垃圾回收机制
本文旨在为读者提供一次深入的探索之旅,穿越Java虚拟机(JVM)的迷宫,揭示对象从诞生到消亡的奥秘。我们将一起揭开内存分配、存活判定以及回收策略等概念背后的神秘面纱,通过案例分析与实践技巧,让读者能够更加高效地运用Java语言,优化程序性能。
|
5天前
|
监控 数据可视化 Java
如何在Java中优化垃圾回收(GC)性能
如何在Java中优化垃圾回收(GC)性能
|
6天前
|
算法 Java 数据库连接
Java垃圾回收机制的深入解析
Java垃圾回收机制的深入解析