数据库两大必备神器:索引和锁底层原理是什么?(一)

简介: SQL数据库开发

一、索引

在之前,我对索引有以下的认知:

  • 索引可以加快数据库的检索速度;
  • 表经常进行INSERT/UPDATE/DELETE操作就不要建立索引了,换言之:索引会降低插入、删除、修改等维护任务的速度;
  • 索引需要占物理和数据空间;
  • 了解过索引的最左匹配原则;
  • 知道索引的分类:聚集索引和非聚集索引;
  • Mysql支持Hash索引和B+树索引两种;

看起来好像啥都知道,但面试让你说的时候可能就GG了:

  • 使用索引为什么可以加快数据库的检索速度啊?
  • 为什么说索引会降低插入、删除、修改等维护任务的速度;
  • 索引的最左匹配原则指的是什么?
  • Hash索引和B+树索引有什么区别?主流的使用哪一个比较多?InnoDB存储都支持吗?
  • 聚集索引和非聚集索引有什么区别?
  • ........

1、聊聊索引的基础知识

首先Mysql的基本存储结构是页(记录都存在页里边):

1.jpg

2.jpg

  • 各个数据页可以组成一个双向链表;
  • 而每个数据页中的记录又可以组成一个单向链表;
  • 每个数据页都会为存储在它里边儿的记录生成一个页目录,在通过主键查找某条记录的时候可以在页目录中使用二分法快速定位到对应的槽,然后再遍历该槽对应分组中的记录即可快速找到指定的记录;
  • 以其他列(非主键)作为搜索条件:只能从最小记录开始依次遍历单链表中的每条记录。

所以说,如果我们写select * from user where username = 'Java3y'这样没有进行任何优化的sql语句,默认会这样做:

  • 定位到记录所在的页
  • 需要遍历双向链表,找到所在的页
  • 从所在的页内中查找相应的记录
  • 由于不是根据主键查询,只能遍历所在页的单链表了

很明显,在数据量很大的情况下这样查找会很慢!

2、索引提高检索速度

索引做了些什么可以让我们查询加快速度呢?

其实就是将无序的数据变成有序(相对):


3.jpg


要找到id为8的记录简要步骤:

4.jpg

很明显的是:没有用索引我们是需要遍历双向链表来定位对应的页,现在通过"目录"就可以很快地定位到对应的页上了!

其实底层结构就是B+树,B+树作为树的一种实现,能够让我们很快地查找出对应的记录。

3、索引降低增删改的速度

5.jpg

如果一棵普通的树在极端的情况下,是能退化成链表的(树的优点就不复存在了)

6.jpg


B+树是平衡树的一种,是不会退化成链表的,树的高度都是相对比较低的(基本符合矮矮胖胖(均衡)的结构)【这样一来我们检索的时间复杂度就是O(logn)】!从上一节的图我们也可以看见,建立索引实际上就是建立一颗B+树。

  • B+树是一颗平衡树,如果我们对这颗树增删改的话,那肯定会破坏它的原有结构;
  • 要维持平衡树,就必须做额外的工作。正因为这些额外的工作开销,导致索引会降低增删改的速度;

4、哈希索引

除了B+树之外,还有一种常见的是哈希索引。

哈希索引就是采用一定的哈希算法,把键值换算成新的哈希值,检索时不需要类似B+树那样从根节点到叶子节点逐级查找,只需一次哈希算法即可立刻定位到相应的位置,速度非常快。

  • 本质上就是把键值换算成新的哈希值,根据这个哈希值来定位。


7.jpg看起来哈希索引很牛逼啊,但其实哈希索引有好几个局限(根据他本质的原理可得):

  • 哈希索引也没办法利用索引完成排序;
  • 不支持最左匹配原则;
  • 在有大量重复键值情况下,哈希索引的效率也是极低的---->哈希碰撞问题;
  • 不支持范围查询;

5、InnoDB支持哈希索引吗?

主流的还是使用B+树索引比较多,对于哈希索引,InnoDB是自适应哈希索引的(hash索引的创建由InnoDB存储引擎引擎自动优化创建,我们干预不了)!


8.jpg


相关文章
|
1月前
|
SQL 存储 关系型数据库
数据库的行级锁与表锁?
表锁:存储引擎在SQL数据读写请求前对涉及的表加锁,分共享读锁和独占写锁,读锁阻塞写,写锁阻塞读写,易发锁冲突,并发性低。行级锁:InnoDB支持,通过索引加锁,提高并发性,但可能引起死锁,需注意索引使用,适用于避免不可重复读场景。
62 21
|
1月前
|
存储 缓存 数据库
数据库索引采用B+树不采用B树的原因?
B+树优化了数据存储和查询效率,数据仅存于叶子节点,便于区间查询和遍历,磁盘读写成本低,查询效率稳定,特别适合数据库索引及范围查询。
40 6
|
2月前
|
存储 缓存 网络安全
南大通用GBase 8s 数据库 RHAC集群基本原理和搭建步骤
南大通用GBase 8s 数据库 RHAC集群基本原理和搭建步骤
|
2月前
|
存储 缓存 数据库
数据库索引采用B+树不采用B树的原因
B+树相较于B树,在数据存储、磁盘读写、查询效率及范围查询方面更具优势。数据仅存于叶子节点,便于高效遍历和区间查询;内部节点不含数据,提高缓存命中率;查询路径固定,效率稳定;特别适合数据库索引使用。
34 1
|
2月前
|
数据库 索引
数据库索引
数据库索引 1、索引:建立在表一列或多列的辅助对象,目的是加快访问表的数据。 2、索引的优点: (1)、创建唯一性索引,可以确保数据的唯一性; (2)、大大加快数据检索速度; (3)、加速表与表之间的连接; (4)、在查询过程中,使用优化隐藏器,提高系统性能。 3、索引的缺点: (1)、创建和维护索引需要耗费时间,随数据量增加而增加; (2)、索引占用物理空间; (3)、对表的数据进行增删改时,索引需要动态维护,降低了数据的维护速度。
42 2
|
2月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
380 1
|
2月前
|
存储 关系型数据库 数据库
Postgres数据库BRIN索引介绍
BRIN索引是PostgreSQL提供的一种高效、轻量级的索引类型,特别适用于大规模、顺序数据的范围查询。通过存储数据块的摘要信息,BRIN索引在降低存储和维护成本的同时,提供了良好的查询性能。然而,其适用场景有限,不适合随机数据分布或频繁更新的场景。在选择索引类型时,需根据数据特性和查询需求进行权衡。希望本文对你理解和使用PostgreSQL的BRIN索引有所帮助。
71 0
|
16天前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
41 3
|
16天前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
44 3
|
16天前
|
SQL 关系型数据库 MySQL
数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog
《数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog》介绍了如何利用MySQL的二进制日志(Binlog)恢复误删除的数据。主要内容包括: 1. **启用二进制日志**:在`my.cnf`中配置`log-bin`并重启MySQL服务。 2. **查看二进制日志文件**:使用`SHOW VARIABLES LIKE 'log_%';`和`SHOW MASTER STATUS;`命令获取当前日志文件及位置。 3. **创建数据备份**:确保在恢复前已有备份,以防意外。 4. **导出二进制日志为SQL语句**:使用`mysqlbinlog`
59 2