【DBMS 数据库管理系统】OLAP 核心技术 : 数据方体 ( 数据方体 | 数据方体格结构 | 数据单元 )

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 【DBMS 数据库管理系统】OLAP 核心技术 : 数据方体 ( 数据方体 | 数据方体格结构 | 数据单元 )

文章目录

一、数据方体

二、数据方体 格结构 ( 参考 )

三、数据单元





一、数据方体


数据方体 简介 :


"数据方体" 概念 : 多维数据模型 构成的 多维数据空间 称为 “数据方体” ( Data Cube ) , 又称 数据立方体 , 超级立方体 , 多维超方体 ;


"数据方体" 组成 : 数据方体 由 多个 维 和 度量 组成 ;


"数据方体" 维数 : 二维 , 三维 的数据方体可以绘制出来 , 超过 3 33 维的数据方体无法绘制 , 但是实际上的数据方体可以是 4 44 维 , 5 55 维 , 甚至更多维 ;


"数据方体" 存储 : 数据方体可以 使用多维方式表示 , 也可以 使用任意方式存储 , 如传统的关系表 ;



数据从 二维表 转为 数据方体 , 也就是从 传统数据库 ( DB ) 转为 数据仓库 ( DW ) ;






二、数据方体 格结构 ( 参考 )


数据方体中存在两种表 : ① 维表 , ② 事实表 ;



数据方体 的 格结构 :


格结构概念 : 格结构是特殊的图 , 格结构中满足半序关系 ;

数据方体 : 数据方体可以表示成一种格结构 , 数据方体的存储 , 计算 , 查询 , 都要涉及到格结构 ;

表的转换 : 由 4 44 维表 , 可以计算各种 3 33 维表 , 由 3 33 维表 , 可以计算各种 2 22维表 , 由 2 22 维表可以计算 1 11 维表 ;


数据方体 格结构 示例 :


4 44 维表 : 以 4 44 维表为例 , 该表描述 商品 信息 , 表中有 4 44 个字段 , 如 时间 , 产品 , 位置 , 供应商 ;

3 33 维表 : 去掉上述 4 44 维表 中的某一维 , 得到 3 33 维视图 , 如 将 供应商 维度删除 , 得到 时间 , 产品 , 位置 三维表 ;

2 22 维表 : 从上述 3 33 维表中再去掉一维 , 得到 2 22 维表 , 如 将 位置 维度删除 , 得到 时间 , 产品 二维表 ;

1 11 维表 : 4 44 维表去掉 3 33 维 , 只留下 一维 , 如只留下 时间维度表 ;


格结构 上的操作 : ( 仅做参考 , 不严谨 )


实体化视图选择 : 给定一个 4 44 维表 , 将其中的某些视图 3 33 维表计算出来 , 选择 哪些维度节点 将其计算出来 , 称为实体化视图选择 ; 实体化是计算出来之后 , 将计算结果存储下来 ;


实体化视图计算 : 给定一个 4 44 维表 , 计算出 3 33 维表的过程 , 称为 实体化视图计算 ;


实体化视图更新 : 数据更新后 , 对应的实体化视图 , 也需要跟着更新 ;


数据方体计算 : 如果存储空间足够大 , 可以将所有的格结构都计算出来 , 这种计算称为 数据方体计算 ;






三、数据单元


数据单元 简介 :


数轴 : 数据方体 中 以 “维” 作为 数轴 ;


数据单元 概念 : 数据方体中 , 每个 “维” 上 都确定一个 “维成员” 时 , 就会唯一确定一个点 , 这个点成为 “数据单元” ( Cell ) ;


相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
5月前
|
Cloud Native 关系型数据库 分布式数据库
|
5月前
|
存储 关系型数据库 分布式数据库
|
6月前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
阿里云PolarDB云原生数据库在TPC-C基准测试中以20.55亿tpmC的成绩刷新世界纪录,展现卓越性能与性价比。其轻量版满足国产化需求,兼具高性能与低成本,适用于多种场景,推动数据库技术革新与发展。
|
2月前
|
分布式计算 Serverless OLAP
实时数仓Hologres V3.1版本发布,Serverless型实例从零开始构建OLAP系统
Hologres推出Serverless型实例,支持按需计费、无需独享资源,适合新业务探索分析。高性能查询内表及MaxCompute/OSS外表,弹性扩展至512CU,性能媲美主流开源产品。新增Dynamic Table升级、直读架构优化及ChatBI解决方案,助力高效数据分析。
实时数仓Hologres V3.1版本发布,Serverless型实例从零开始构建OLAP系统
|
5月前
|
前端开发 数据库
会议室管理系统源码(含数据库脚本)
会议室管理系统源码(含数据库脚本)
83 0
|
5月前
|
存储 关系型数据库 分布式数据库
|
4月前
|
存储 缓存 分布式计算
StarRocks x Iceberg:云原生湖仓分析技术揭秘与最佳实践
本文将深入探讨基于 StarRocks 和 Iceberg 构建的云原生湖仓分析技术,详细解析两者结合如何实现高效的查询性能优化。内容涵盖 StarRocks Lakehouse 架构、与 Iceberg 的性能协同、最佳实践应用以及未来的发展规划,为您提供全面的技术解读。 作者:杨关锁,北京镜舟科技研发工程师
StarRocks x Iceberg:云原生湖仓分析技术揭秘与最佳实践
|
3月前
|
存储 人工智能 关系型数据库
诚邀您参加《智启云存:AI时代数据库RDS存储新突破》线上闭门技术沙龙!
诚邀您参加6月11日(周三)14:00在线上举行的《智启云存:AI时代数据库RDS存储新突破》闭门活动。免费报名并有机会获得精美礼品,快来报名吧:https://hd.aliyun.com/form/6162
|
4月前
|
人工智能 关系型数据库 分布式数据库
媒体声音|从亚太到欧美,阿里云瑶池数据库凭何成为中企出海的技术底气?
在中企出海的时代浪潮中,瑶池数据库正凭借其技术创新、场景化解决方案、智能化能力、全球化布局,成为企业跨越挑战、构建全球竞争力的关键伙伴;同时也以硬核的技术实力证明了中国数据库的国际竞争力。
|
5月前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇

热门文章

最新文章