REDIS07_布隆过滤器BloomFilter的概述、优缺点、使用场景、底层原理、布谷鸟过滤器(三)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: REDIS07_布隆过滤器BloomFilter的概述、优缺点、使用场景、底层原理、布谷鸟过滤器(三)

(3). 判断是否存在


向布隆过滤器查询某个key是否存在时,先把这个key通过相同的多个hash函数进行运算,查看对应的位置是否都为1,


只要有一个位为 0,那么说明布隆过滤器中这个 key 不存在


如果这几个位置全都是 1,那么说明极有可能存在


因为这些位置的1可能是因为其他的key存在导致的,也就是前面说过的hash冲突


就比如我们在add了字符串wmyskxz数据之后,很明显下面1/3/5这几个位置的1是因为第一次添加的 wmyskxz 而导致的


此时我们查询一个没添加过的不存在的字符串inexistent-key,它有可能计算后坑位也是1/3/5 ,这就是误判了


微信图片_20220109184413.png

微信图片_20220109184416.png


⑥. 布隆过滤器误判率,为什么不要删除


布隆过滤器的误判是指多个输入经过哈希之后在相同的bit位置1了,这样就无法判断究竟是哪个输入产生的,


因此误判的根源在于相同的 bit 位被多次映射且置 1。


这种情况也造成了布隆过滤器的删除问题,因为布隆过滤器的每一个 bit 并不是独占的,很有可能多个元素共享了某一位。


如果我们直接删除这一位的话,会影响其他的元素


特性


一个元素判断结果为没有时则一定没有,


如果判断结果为存在的时候元素不一定存在。


布隆过滤器可以添加元素,但是不能删除元素。因为删掉元素会导致误判率增加。


⑤. 布谷鸟过滤器(了解)


①. 为了解决布隆过滤器不能删除元素的问题,布谷鸟过滤器横空出世。论文《Cuckoo Filter:Better Than Bloom》


②. 作者将布谷鸟过滤器和布隆过滤器进行了深入的对比。相比布谷鸟过滤器而言布隆过滤器有以下不足:

查询性能弱、空间利用效率低、不支持反向操作(删除)以及不支持计数


相关文章
|
存储 缓存 NoSQL
Redis 服务器全方位介绍:从入门到核心原理
Redis是一款高性能内存键值数据库,支持字符串、哈希、列表等多种数据结构,广泛用于缓存、会话存储、排行榜及消息队列。其单线程事件循环架构保障高并发与低延迟,结合RDB和AOF持久化机制兼顾性能与数据安全。通过主从复制、哨兵及集群模式实现高可用与横向扩展,适用于现代应用的多样化场景。合理配置与优化可显著提升系统性能与稳定性。
231 0
|
2月前
|
存储 缓存 监控
Redis分区的核心原理与应用实践
Redis分区通过将数据分散存储于多个节点,提升系统处理高并发与大规模数据的能力。本文详解分区原理、策略及应用实践,涵盖哈希、范围、一致性哈希等分片方式,分析其适用场景与性能优势,并探讨电商秒杀、物联网等典型用例,为构建高性能、可扩展的Redis集群提供参考。
154 0
|
9月前
|
消息中间件 缓存 NoSQL
Redis原理—5.性能和使用总结
本文详细探讨了Redis的阻塞原因、性能优化、缓存相关问题及数据库与缓存的一致性问题。同时还列举了不同缓存操作方案下的并发情况,帮助读者理解并选择合适的缓存管理策略。最终得出结论,在实际应用中应尽量采用“先更新数据库再删除缓存”的方案,并结合异步重试机制来保证数据的一致性和系统的高性能。
Redis原理—5.性能和使用总结
|
9月前
|
NoSQL 算法 安全
Redis原理—1.Redis数据结构
本文介绍了Redis 的主要数据结构及应用。
Redis原理—1.Redis数据结构
|
9月前
|
缓存 NoSQL Redis
Redis原理—2.单机数据库的实现
本文概述了Redis数据库的核心结构和操作机制。
Redis原理—2.单机数据库的实现
|
9月前
|
存储 缓存 NoSQL
Redis原理—4.核心原理摘要
Redis 是一个基于内存的高性能NoSQL数据库,支持分布式集群和持久化。其网络通信模型采用多路复用监听与文件事件机制,通过单线程串行化处理大量并发请求,确保高效运行。本文主要简单介绍了 Redis 的核心特性。
|
9月前
|
缓存 NoSQL Redis
Redis原理—3.复制、哨兵和集群
详细介绍了Redis的复制原理、哨兵原理和集群原理。
|
9月前
|
运维 NoSQL 算法
【📕分布式锁通关指南 04】redis分布式锁的细节问题以及RedLock算法原理
本文深入探讨了基于Redis实现分布式锁时遇到的细节问题及解决方案。首先,针对锁续期问题,提出了通过独立服务、获取锁进程自己续期和异步线程三种方式,并详细介绍了如何利用Lua脚本和守护线程实现自动续期。接着,解决了锁阻塞问题,引入了带超时时间的`tryLock`机制,确保在高并发场景下不会无限等待锁。最后,作为知识扩展,讲解了RedLock算法原理及其在实际业务中的局限性。文章强调,在并发量不高的场景中手写分布式锁可行,但推荐使用更成熟的Redisson框架来实现分布式锁,以保证系统的稳定性和可靠性。
530 0
【📕分布式锁通关指南 04】redis分布式锁的细节问题以及RedLock算法原理
|
运维 NoSQL 前端开发
介绍一下Redis的优缺点
【10月更文挑战第19天】介绍一下Redis的优缺点
|
设计模式 NoSQL 网络协议
大数据-48 Redis 通信协议原理RESP 事件处理机制原理 文件事件 时间事件 Reactor多路复用
大数据-48 Redis 通信协议原理RESP 事件处理机制原理 文件事件 时间事件 Reactor多路复用
194 2

热门文章

最新文章