AI促进药物发现:未来是多细胞研究

简介: AI促进药物发现:未来是多细胞研究

Phenomic AI的Sam Cooper博士和Michael Briskin讨论了人工智能(AI)如何使他们能够针对多细胞相互作用进行药物开发。

image.png许多预后最差的癌症由于其免疫抑制性的微环境而对免疫疗法产生耐药性。然而,研究和靶向这些癌症并不是一项简单的任务,主要是因为这种环境依赖于不同细胞类型之间的众多相互作用,这意味着孤立地研究单个细胞类型的传统方法无法提供准确的代表性。


虽然包含多种不同细胞类型的多细胞培养物和器官体可以提供更多生理相关的模型,但要确定特定细胞在疾病中的作用以及研究性治疗如何影响它们,需要进行单细胞分析,这又会产生大量的数据集。


理解这些数据对于理解这些复杂的疾病,从而成功开发候选药物至关重要。Drug Target Review的Hannah Balfour采访了Phenomic AI的首席执行官Sam Cooper博士和该公司的首席科学官Michael Briskin博士,讨论了他们为什么使用人工智能(AI)来分析他们的湿实验室数据,以及如何使他们能够开发针对复杂生物学的治疗性抗体,如肿瘤基质。


为什么要使用AI分析多细胞培养数据?


Cooper解释说:“多细胞模型具有多种不同的细胞类型,它们可以共同生长和相互作用,而单一培养只有一种类型。通常,使用多细胞培养物时,制药公司会进行大量分析。他们一起分析所有细胞并获得单一结果。但是,这不能显示培养物中每个单个细胞正在发生什么。相反,使用成像和单细胞RNA测序技术来了解单细胞水平上发生的事情。这会产生大量数据,将使用一种深层神经网络对其进行处理,以消化和识别存在的细胞类型以及它们如何受到影响。


image.png

image.png

允许研究人员做的是针对不同细胞类型之间的相互作用。当研究肿瘤微环境时,这是关键,因为它包含许多彼此相互作用的细胞类型。通过一起培养和试验这些细胞类型,但将它们作为个体进行分析,能够观察细胞-细胞反馈以及不同细胞产物之间的相互作用,并确定其中哪些可能导致疾病。


基于AI识别肿瘤基质的药物靶标


为什么要研究和靶向肿瘤基质?


Briskin博士解释说,肿瘤基质是肿瘤学领域特别理想的靶标,因为它积极参与在肿瘤周围建立免疫抑制或免疫排斥的环境,从而阻止了它们对免疫疗法的有效反应。他说,这些通常是预后最差的肿瘤,并补充说一些例子包括胰腺癌,结直肠癌,前列腺癌和乳腺癌子集。


多细胞培养和AI在此应用中有何帮助?


为了有效地研究肿瘤基质,Phenomic开发了一个平台,该平台使用深度学习工具来分析实验数据并消除多细胞分析中靶标抑制作用的影响。迄今为止,这已使研究人员能够识别肿瘤基质中的新靶标并开发抗体疗法,他们希望将其推进临床前研究中。肿瘤基质是一个复杂的结构,富含许多细胞类型,包括基质蛋白和成纤维细胞,它们相互作用产生免疫抑制性微环境。为了了解和开发用于肿瘤基质的药物,需要多细胞模型和多组学方法。


药物研发中使用AI


Cooper说,这一领域令人兴奋,自从1980年代首次出现以来,人工智能已经发展了很多。其在药物发现中的当前用途分为三个不同的组:


最早的应用是设计化合物或蛋白质,现在有大量使用高级机器学习(ML)的公司涌入。


出现的第二种方法是检查大型临床数据集并分析某种药物是否可以使特定患者群体受益。


使用ML分析大型实验和组织数据集,以从分子水平帮助理解健康和疾病中的生物学。


未来用于药物发现的AI的发展而言,Phenomic正处于使用它来探索蛋白质组学的边缘,而除此之外,可能还在研究代谢组学和糖组学。这意味着数据集将变得更加丰富,甚至更有价值。


Cooper和Briskin得出结论,ML能够从多细胞研究中消化大量数据集的能力意味着它正在成为增进对健康和疾病中细胞复杂相互作用的生物学认识的日益重要的工具。


目录
相关文章
|
5月前
|
机器学习/深度学习 人工智能 文字识别
UGPhysics:本科物理推理评估基准发布,助力AI+Physics交叉研究
近年来,人工智能快速发展,大语言模型(LLM)在数学、代码等领域展现出强大的推理和生成能力,正在被广泛应用于各种场景。
157 0
|
16天前
|
存储 人工智能 安全
拔俗AI临床大数据科研分析平台:让医学研究更智能、更高效
阿里云原生AI临床大数据科研平台,打通异构医疗数据壁垒,实现智能治理、可视化分析与多中心安全协作,助力医院科研提速增效,推动精准医疗发展。
|
人工智能 大数据 安全
拔俗AI临床大数据科研分析平台:用智能技术加速医学研究新突破
AI临床大数据科研平台基于云原生架构,融合医疗NLP、联邦学习与智能分析技术,破解非结构化数据处理难、多源数据融合难、统计周期长等痛点,实现数据治理、智能分析与安全协作全链路升级,赋能医学科研高效、安全、智能化发展。
|
4月前
|
机器学习/深度学习 人工智能 自动驾驶
AI Agent多模态融合策略研究与实证应用
本文从多模态信息融合的理论基础出发,构建了一个结合图像与文本的AI Agent模型,并通过PyTorch代码实现了完整的图文问答流程。未来,多模态智能体将在医疗、自动驾驶、虚拟助手等领域展现巨大潜力。模型优化的核心是提升不同模态的协同理解与推理能力,从而打造真正“理解世界”的AI Agent。
AI Agent多模态融合策略研究与实证应用
|
4月前
|
机器学习/深度学习 人工智能 算法
深度强化学习在异构环境中AI Agent行为泛化能力研究
随着人工智能技术的迅猛发展,AI Agent 在游戏、智能制造、自动驾驶等场景中已逐步展现出强大的自适应能力。特别是深度强化学习(Deep Reinforcement Learning, DRL)的引入,使得智能体能够通过与环境的交互,自动学习最优的行为策略。本文将系统性地探讨基于深度强化学习的AI Agent行为决策机制,并结合代码实战加以说明。
深度强化学习在异构环境中AI Agent行为泛化能力研究
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
原来AI也能“读心术”?——聊聊AI在心理学研究中的那些突破
原来AI也能“读心术”?——聊聊AI在心理学研究中的那些突破
169 1
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
AI 驱动:如何用AI直接生成矢量 Logo? 技术研究与工具选择
AI 技术革新品牌标志设计,通过深度学习分析数据,精准把握市场趋势,智能生成高辨识度 Logo。矢量格式(SVG)确保清晰不失真,适配各类展示场景。AI 工具高效便捷,支持个性化定制,助力品牌快速打造专业视觉形象,成为市场竞争中的有力武器。
244 0
|
7月前
|
机器学习/深度学习 人工智能 搜索推荐
AutoGLM沉思:智谱AI推出首个能"边想边干"的自主智能体!深度研究+多模态交互,颠覆传统AI工作模式
AutoGLM沉思是由智谱AI推出的一款开创性AI智能体,它突破性地将深度研究能力与实际操作能力融为一体,实现了AI从被动响应到主动执行的跨越式发展。
511 16
AutoGLM沉思:智谱AI推出首个能"边想边干"的自主智能体!深度研究+多模态交互,颠覆传统AI工作模式
|
7月前
|
人工智能 编解码 异构计算
Neo-1:全球首个原子级生成式AI模型!这个AI模型把10年药物研发周期压缩到1个月
VantAI推出的Neo-1是全球首个统一分子生成与原子级结构预测的AI模型,采用潜在空间扩散技术,结合大规模训练和定制数据集,显著提升药物研发效率。
320 15
Neo-1:全球首个原子级生成式AI模型!这个AI模型把10年药物研发周期压缩到1个月
|
5月前
|
数据采集 人工智能 定位技术
AI尝鲜:DeerFlow,可以使用MCP的深度研究工具
DeerFlow(Deep Exploration and Efficient Research Flow)是一个社区驱动的深度研究框架,它建立在开源社区的杰出工作基础之上。我们的目标是将语言模型与专业工具(如网络搜索、爬虫和 Python 代码执行)相结合,同时回馈使这一切成为可能的社区。

热门文章

最新文章

下一篇
开通oss服务