16 张图带你搞懂 Java 数据结构,从此想不飘都难!(1)

简介: 16 张图带你搞懂 Java 数据结构,从此想不飘都难!

CSDN 的小伙伴们,大家好,我是沉默的王二。


假期结束了,需要快速切换到工作的状态投入到新的一天当中。放假的时候痛快地玩耍,上班的时候积极的工作,这应该是我们大多数“现代人”该有的生活状态。


今天我们来学一下数据结构方面的知识,对扎实 Java 的基本功非常有用,学会了就会有一种自带大佬的感觉,嘿嘿。数据结构,也就是 Data Structure,是一种存储数据的结构体,数据与数据之间存在着一定的关系,这样的关系有数据的逻辑关系、数据的存储关系和数据的运算关系。


在 Java 中,数据结构一般可以分为两大类:线性数据结构和非线性数据结构。哈哈,这个非字很有灵魂吧?


先来说线性数据结构吧。


1)数组


一眼看上去就知道的,像 String []、int [] 这种;还有需要看两眼才能看透的(看源码了),像 ArrayList,内部对数组进行了封装。


数组这种数据结构最大的好处,就是可以根据下标(或者叫索引)进行操作,插入的时候可以根据下标直接插入到具体的位置,但与此同时,后面的元素就需要全部向后移动,需要移动的数据越多,就越累。


假设现在已经有了一个 ArrayList 了,准备在第 4 个位置(下标为 3)上添加一个元素 55。


image.png


此时 ArrayList 中第 5 个位置以后的元素将会向后移动。


image.png


准备把 23 从 ArrayList 中移除。


image.png


此时下标为 7、8、9 的元素往前挪。


image.png


简单总结一下 ArrayList 的时间复杂度,方便大家在学习的时候作为参考。


1、通过下标(也就是 get(int index))访问一个元素的时间复杂度为 O(1),因为是直达的,无论数据增大多少倍,耗时都不变。


2、添加一个元素(也就是 add())的时间复杂度为 O(1),因为直接添加到末尾。


3、删除一个元素的时间复杂度为 O(n),因为要遍历列表,数据量增大几倍,耗时也增大几倍。


4、查找一个未排序的列表时间复杂度为 O(n),因为要遍历列表;查找排序过的列表时间复杂度为 O(log n),因为可以使用二分查找法,当数据增大 n 倍时,耗时增大 logn 倍(这里的 log 是以 2 为底的,每找一次排除一半的可能)。


2)链表


链表在物理存储空间是不连续的,但每个节点要么知道它的下一个节点是谁,要么知道它的上一个节点是谁,仿佛就像我们之间隔着千山万水,却心有灵犀一点链。像 LinkedList 就是最典型的链表结构,通过引用相互链接。


LinkedList 中的每一个元素都可以称之为节点(Node),每一个节点都包含三个项目:其一是元素本身,其二是指向下一个元素的引用地址,其三是指向上一个元素的引用地址。


LinkedList 看起来就像下面这个样子:


image.png


第一个节点由于没有前一个节点,所以 prev 为 null;

最后一个节点由于没有后一个节点,所以 next 为 null;

这是一个双向链表,每一个节点都由三部分组成,前后节点和值。

相比 ArrayList,LinkedList 有以下优势:


1、LinkedList 允许内存进行动态分配,这就意味着内存分配是由编译器在运行时完成的,我们无需在 LinkedList 声明的时候指定大小。


2、LinkedList 不需要在连续的位置上存储元素,因为节点可以通过引用指定下一个节点或者前一个节点。也就是说,LinkedList 在插入和删除元素的时候代价很低,因为不需要移动其他元素,只需要更新前一个节点和后一个节点的引用地址即可。


3)栈


栈是一种非常有用的数据结构,它就像一摞盘子,第一个放在最下面,第二个放在第一个上面,第三个放在第二个上面,最后一个放在最上面。栈遵循后进先出的原则,也就是“Last In First Out”(简称 LIFO)——最后的一个进的,最先出去。


对于栈这样一个数据结构来说,它有两个常见的动作:


push,中文释义有很多种,我个人更喜欢叫它“压入”,非常形象。当我们要把一个数据放入栈的顶部,这个动作就叫做 push。


pop,同样的,我个人更喜欢叫它“弹出”,带有很强烈的动画效果,有没有?当我们要从栈中移除一个数据时,这个动作就叫做 pop。


image.png


4)队列


队列,只允许在队尾添加数据,队首移除数据。队列在 Java 中的出现频率非常高,有各种不同的类来满足不同的场景需求。像优先级队列 PriorityQueue、延时队列 DelayQueue 等等。队列遵循的是 First In First Out,缩写为 FIFO,也就是先进先出,第一个进入队列的第一个先出来。


image.png

相关文章
|
7月前
|
前端开发 Java
java实现队列数据结构代码详解
本文详细解析了Java中队列数据结构的实现,包括队列的基本概念、应用场景及代码实现。队列是一种遵循“先进先出”原则的线性结构,支持在队尾插入和队头删除操作。文章介绍了顺序队列与链式队列,并重点分析了循环队列的实现方式以解决溢出问题。通过具体代码示例(如`enqueue`入队和`dequeue`出队),展示了队列的操作逻辑,帮助读者深入理解其工作机制。
246 1
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
795 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
5月前
|
存储 安全 Java
Java 集合面试题从数据结构到 HashMap 源码剖析详解及长尾考点梳理
本文深入解析Java集合框架,涵盖基础概念、常见集合类型及HashMap的底层数据结构与源码实现。从Collection、Map到Iterator接口,逐一剖析其特性与应用场景。重点解读HashMap在JDK1.7与1.8中的数据结构演变,包括数组+链表+红黑树优化,以及put方法和扩容机制的实现细节。结合订单管理与用户权限管理等实际案例,展示集合框架的应用价值,助你全面掌握相关知识,轻松应对面试与开发需求。
295 3
|
存储 Java
Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。
【10月更文挑战第19天】本文详细介绍了Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。HashMap以其高效的插入、查找和删除操作著称,而TreeMap则擅长于保持元素的自然排序或自定义排序,两者各具优势,适用于不同的开发场景。
146 1
|
存储 Java
告别混乱!用Java Map优雅管理你的数据结构
【10月更文挑战第17天】在软件开发中,随着项目复杂度增加,数据结构的组织和管理至关重要。Java中的Map接口提供了一种优雅的解决方案,帮助我们高效、清晰地管理数据。本文通过在线购物平台的案例,展示了Map在商品管理、用户管理和订单管理中的具体应用,有效提升了代码质量和维护性。
235 2
|
存储 Java 开发者
Java Map实战:用HashMap和TreeMap轻松解决复杂数据结构问题!
【10月更文挑战第17天】本文深入探讨了Java中HashMap和TreeMap两种Map类型的特性和应用场景。HashMap基于哈希表实现,支持高效的数据操作且允许键值为null;TreeMap基于红黑树实现,支持自然排序或自定义排序,确保元素有序。文章通过具体示例展示了两者的实战应用,帮助开发者根据实际需求选择合适的数据结构,提高开发效率。
267 2
|
7月前
|
存储 Java 编译器
Java 中 .length 的使用方法:深入理解 Java 数据结构中的长度获取机制
本文深入解析了 Java 中 `.length` 的使用方法及其在不同数据结构中的应用。对于数组,通过 `.length` 属性获取元素数量;字符串则使用 `.length()` 方法计算字符数;集合类如 `ArrayList` 采用 `.size()` 方法统计元素个数。此外,基本数据类型和包装类不支持长度属性。掌握这些区别,有助于开发者避免常见错误,提升代码质量。
758 1
|
11月前
|
存储 缓存 安全
Java 集合江湖:底层数据结构的大揭秘!
小米是一位热爱技术分享的程序员,本文详细解析了Java面试中常见的List、Set、Map的区别。不仅介绍了它们的基本特性和实现类,还深入探讨了各自的使用场景和面试技巧,帮助读者更好地理解和应对相关问题。
179 5
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
216 6
|
存储 Java 索引
Java中的数据结构:ArrayList和LinkedList的比较
【10月更文挑战第28天】在Java编程世界中,数据结构是构建复杂程序的基石。本文将深入探讨两种常用的数据结构:ArrayList和LinkedList,通过直观的比喻和实例分析,揭示它们各自的优势与局限,帮助你在面对不同的编程挑战时做出明智的选择。

热门文章

最新文章

下一篇
oss云网关配置