python可视化进阶---seaborn1.6 分类数据可视化 - 分布图 boxplot() / violinplot() / lvplot()

简介: 分类数据可视化 - 分布图(箱型图,小提琴图,LV图)boxplot() / violinplot() / lvplot()

分类数据可视化 - 分布图(箱型图,小提琴图,LV图)

boxplot() / violinplot() / lvplot()

1. boxplot()

#绘制箱型图

import seaborn as sns
#导入数据
tips = sns.load_dataset('tips')
sns.boxplot(x = 'day', y = 'total_bill', data = tips,
            linewidth = 2, #线宽
            width = 0.8, #箱之间的间隔比例
            fliersize = 3, #异常点大小
            palette = 'hls', #设置调色板
            whis = 1.5,     #设置IQR
            notch = True,   #设置是否以中值做凹槽
            order = {'Thur','Fri','Sat','Sun'}, #筛选类别
            )
#可以添加散点图
sns.swarmplot(x = 'day', y = 'total_bill', data = tips, color = 'k', size = 3, alpha = 0.8)

20180911152538138.png

#通过参数再分类

#通过参数再分类
sns.boxplot(x = 'day', y = 'total_bill', data = tips,
            hue = 'smoker', palette = 'Reds')

20180911152639403.png

2. violinplot()

# 小提琴图

示例1:

sns.violinplot(x = 'day', y = 'total_bill', data = tips,
               linewidth = 2, #线宽
               width = 0.8,   #箱之间的间隔比例
               palette = 'hls', #设置调色板
               order = {'Thur', 'Fri', 'Sat','Sun'}, #筛选类别
               scale = 'count',  #测度小提琴图的宽度: area-面积相同,count-按照样本数量决定宽度,width-宽度一样
               gridsize = 50, #设置小提琴图的平滑度,越高越平滑
               inner = 'box', #设置内部显示类型 --> 'box','quartile','point','stick',None
               #bw = 0.8      #控制拟合程度,一般可以不设置
               )

20180911152750425.png

示例2:通过hue再分类

#通过hue参数再分类
sns.violinplot(x = 'day', y = 'total_bill', data = tips,
               hue = 'smoker', palette = 'muted',
               split = True, #设置是否拆分小提琴图
               inner = 'quartile')

20180911152840931.png

示例3:结合散点图

#插入散点图
sns.violinplot(x = 'day', y = 'total_bill', data = tips, palette = 'hls', inner = None)
sns.swarmplot(x = 'day', y = 'total_bill', data = tips,color = 'w', alpha = .5)

20180911152929207.png

3.lvplot()

#LV图表

#绘制LV图
sns.lvplot(x = 'day', y = 'total_bill', data = tips, palette = 'mako',
           #hue = 'smoker',
           width = 0.8,  #箱之间间隔比例
           linewidth = 12,
           scale = 'area', #设置框的大小 --> 'linear'、'exonential'、'area'
           k_depth = 'proportion' #设置框的数量 --> 'proportion','tukey','trustworthy'
           )
#可以添加散点图
sns.swarmplot(x = 'day', y = 'total_bill', data = tips, color ='k', size =3, alpha = 0.8)

20180911153010640.png

相关文章
|
17天前
|
数据可视化 数据挖掘 定位技术
Python和Geopandas进行地理数据可视化
【10月更文挑战第22天】本文介绍了如何使用Python和Geopandas进行地理数据可视化和分析,涵盖从准备工作、加载数据、数据探索与处理、地理数据可视化、空间分析与查询到交互式地理数据可视化等内容。通过丰富的代码示例和案例演示,帮助读者掌握地理数据分析的基本方法,为实际应用提供支持。
59 19
|
13天前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
16天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
39 3
|
29天前
|
数据可视化 数据挖掘 Python
使用Python进行数据可视化:探索与实践
【10月更文挑战第21天】本文旨在通过Python编程,介绍如何利用数据可视化技术来揭示数据背后的信息和趋势。我们将从基础的图表创建开始,逐步深入到高级可视化技巧,包括交互式图表和动态展示。文章将引导读者理解不同图表类型适用的场景,并教授如何使用流行的库如Matplotlib和Seaborn来制作美观且具有洞察力的可视化作品。
47 7
|
28天前
|
数据可视化 定位技术 Python
使用Python进行数据可视化
【10月更文挑战第22天】在这篇文章中,我们将深入探讨如何使用Python进行数据可视化。我们将从基础的图表开始,然后逐步进入更复杂的可视化技术。我们将通过实例代码来展示如何实现这些可视化,以便读者能够更好地理解和应用这些技术。
25 5
|
29天前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
【10月更文挑战第20天】本文旨在为编程新手提供一个简洁明了的入门指南,通过Python语言实现数据可视化。我们会介绍如何安装必要的库、理解数据结构,并利用这些知识来创建基本图表。文章将用通俗易懂的语言和示例代码,帮助读者快速掌握数据可视化的基础技能。
32 4
|
17天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
30天前
|
数据可视化 数据挖掘 定位技术
Python中利用Bokeh创建动态数据可视化
【10月更文挑战第14天】本文介绍了如何使用 Bokeh 库在 Python 中创建动态数据可视化。Bokeh 是一个强大的开源可视化工具,支持交互式图表和大规模数据集的可视化。文章从安装 Bokeh 开始,逐步讲解了如何创建动态折线图,并添加了交互式控件如按钮、滑块和下拉菜单,以实现数据更新频率的调节和颜色选择。通过这些示例,读者可以掌握 Bokeh 的基本用法,进一步探索其丰富功能,创建更具吸引力和实用性的动态数据可视化。
30 0
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据处理与可视化——以气温数据分析为例
【10月更文挑战第12天】使用Python进行数据处理与可视化——以气温数据分析为例
213 0
|
1月前
|
数据可视化 定位技术 Python
Python数据可视化--Matplotlib--入门
Python数据可视化--Matplotlib--入门
29 0
下一篇
无影云桌面