Linux高性能服务器编程--用进程池实现的简单CGI服务器

简介: Linux高性能服务器编程--用进程池实现的简单CGI服务器

参考资料:http://blog.csdn.net/freeelinux/article/details/52350257

Linux高性能服务器编程,游双》第15章,进程池和线程池

1、线程池服务器程序

进程池的实现processpool.h

#ifndef PROCESSPOOL_H
#define PROCESSPOOL_H
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/stat.h>
class process
{
public:
    process() : m_pid( -1 ){}
public:
    pid_t m_pid;
    int m_pipefd[2];
};
template< typename T >
class processpool
{
private:
    processpool( int listenfd, int process_number = 8 );
public:
    static processpool< T >* create( int listenfd, int process_number = 8 )
    {
        if( !m_instance )
        {
            m_instance = new processpool< T >( listenfd, process_number );
        }
        return m_instance;
    }
    ~processpool()
    {
        delete [] m_sub_process;
    }
    void run();
private:
    void setup_sig_pipe();
    void run_parent();
    void run_child();
private:
    static const int MAX_PROCESS_NUMBER = 16;
    static const int USER_PER_PROCESS = 65536;
    static const int MAX_EVENT_NUMBER = 10000;
    int m_process_number;
    int m_idx;
    int m_epollfd;
    int m_listenfd;
    int m_stop;
    process* m_sub_process;
    static processpool< T >* m_instance;
};
template< typename T >
processpool< T >* processpool< T >::m_instance = NULL;
static int sig_pipefd[2];
static int setnonblocking( int fd )
{
    int old_option = fcntl( fd, F_GETFL );
    int new_option = old_option | O_NONBLOCK;
    fcntl( fd, F_SETFL, new_option );
    return old_option;
}
static void addfd( int epollfd, int fd )
{
    epoll_event event;
    event.data.fd = fd;
    event.events = EPOLLIN | EPOLLET;
    epoll_ctl( epollfd, EPOLL_CTL_ADD, fd, &event );
    setnonblocking( fd );
}
static void removefd( int epollfd, int fd )
{
    epoll_ctl( epollfd, EPOLL_CTL_DEL, fd, 0 );
    close( fd );
}
static void sig_handler( int sig )
{
    int save_errno = errno;
    int msg = sig;
    send( sig_pipefd[1], ( char* )&msg, 1, 0 );
    errno = save_errno;
}
static void addsig( int sig, void( handler )(int), bool restart = true )
{
    struct sigaction sa;
    memset( &sa, '\0', sizeof( sa ) );
    sa.sa_handler = handler;
    if( restart )
    {
        sa.sa_flags |= SA_RESTART;
    }
    sigfillset( &sa.sa_mask );
    assert( sigaction( sig, &sa, NULL ) != -1 );
}
template< typename T >
processpool< T >::processpool( int listenfd, int process_number ) 
    : m_listenfd( listenfd ), m_process_number( process_number ), m_idx( -1 ), m_stop( false )
{
    assert( ( process_number > 0 ) && ( process_number <= MAX_PROCESS_NUMBER ) );
    m_sub_process = new process[ process_number ];
    assert( m_sub_process );
    for( int i = 0; i < process_number; ++i )
    {
        int ret = socketpair( PF_UNIX, SOCK_STREAM, 0, m_sub_process[i].m_pipefd );
        assert( ret == 0 );
        m_sub_process[i].m_pid = fork();
        assert( m_sub_process[i].m_pid >= 0 );
        if( m_sub_process[i].m_pid > 0 )
        {
            close( m_sub_process[i].m_pipefd[1] );
            continue;
        }
        else
        {
            close( m_sub_process[i].m_pipefd[0] );
            m_idx = i;
            break;
        }
    }
}
template< typename T >
void processpool< T >::setup_sig_pipe()
{
    m_epollfd = epoll_create( 5 );
    assert( m_epollfd != -1 );
    int ret = socketpair( PF_UNIX, SOCK_STREAM, 0, sig_pipefd );
    assert( ret != -1 );
    setnonblocking( sig_pipefd[1] );
    addfd( m_epollfd, sig_pipefd[0] );
    addsig( SIGCHLD, sig_handler );
    addsig( SIGTERM, sig_handler );
    addsig( SIGINT, sig_handler );
    addsig( SIGPIPE, SIG_IGN );
}
template< typename T >
void processpool< T >::run()
{
    if( m_idx != -1 )
    {
        run_child();
        return;
    }
    run_parent();
}
template< typename T >
void processpool< T >::run_child()
{
    setup_sig_pipe();
    int pipefd = m_sub_process[m_idx].m_pipefd[ 1 ];
    addfd( m_epollfd, pipefd );
    epoll_event events[ MAX_EVENT_NUMBER ];
    T* users = new T [ USER_PER_PROCESS ];
    assert( users );
    int number = 0;
    int ret = -1;
    while( ! m_stop )
    {
        number = epoll_wait( m_epollfd, events, MAX_EVENT_NUMBER, -1 );
        if ( ( number < 0 ) && ( errno != EINTR ) )
        {
            printf( "epoll failure\n" );
            break;
        }
        for ( int i = 0; i < number; i++ )
        {
            int sockfd = events[i].data.fd;
            if( ( sockfd == pipefd ) && ( events[i].events & EPOLLIN ) )
            {
                int client = 0;
                ret = recv( sockfd, ( char* )&client, sizeof( client ), 0 );
                if( ( ( ret < 0 ) && ( errno != EAGAIN ) ) || ret == 0 ) 
                {
                    continue;
                }
                else
                {
                    struct sockaddr_in client_address;
                    socklen_t client_addrlength = sizeof( client_address );
                    int connfd = accept( m_listenfd, ( struct sockaddr* )&client_address, &client_addrlength );
                    if ( connfd < 0 )
                    {
                        printf( "errno is: %d\n", errno );
                        continue;
                    }
                    addfd( m_epollfd, connfd );
                    users[connfd].init( m_epollfd, connfd, client_address );
                }
            }
            else if( ( sockfd == sig_pipefd[0] ) && ( events[i].events & EPOLLIN ) )
            {
                int sig;
                char signals[1024];
                ret = recv( sig_pipefd[0], signals, sizeof( signals ), 0 );
                if( ret <= 0 )
                {
                    continue;
                }
                else
                {
                    for( int i = 0; i < ret; ++i )
                    {
                        switch( signals[i] )
                        {
                            case SIGCHLD:
                            {
                                pid_t pid;
                                int stat;
                                while ( ( pid = waitpid( -1, &stat, WNOHANG ) ) > 0 )
                                {
                                    continue;
                                }
                                break;
                            }
                            case SIGTERM:
                            case SIGINT:
                            {
                                m_stop = true;
                                break;
                            }
                            default:
                            {
                                break;
                            }
                        }
                    }
                }
            }
            else if( events[i].events & EPOLLIN )
            {
                 users[sockfd].process();
            }
            else
            {
                continue;
            }
        }
    }
    delete [] users;
    users = NULL;
    close( pipefd );
    //close( m_listenfd );
    close( m_epollfd );
}
template< typename T >
void processpool< T >::run_parent()
{
    setup_sig_pipe();
    addfd( m_epollfd, m_listenfd );
    epoll_event events[ MAX_EVENT_NUMBER ];
    int sub_process_counter = 0;
    int new_conn = 1;
    int number = 0;
    int ret = -1;
    while( ! m_stop )
    {
        number = epoll_wait( m_epollfd, events, MAX_EVENT_NUMBER, -1 );
        if ( ( number < 0 ) && ( errno != EINTR ) )
        {
            printf( "epoll failure\n" );
            break;
        }
        for ( int i = 0; i < number; i++ )
        {
            int sockfd = events[i].data.fd;
            if( sockfd == m_listenfd )
            {
                int i =  sub_process_counter;
                do
                {
                    if( m_sub_process[i].m_pid != -1 )
                    {
                        break;
                    }
                    i = (i+1)%m_process_number;
                }
                while( i != sub_process_counter );
                if( m_sub_process[i].m_pid == -1 )
                {
                    m_stop = true;
                    break;
                }
                sub_process_counter = (i+1)%m_process_number;
                //send( m_sub_process[sub_process_counter++].m_pipefd[0], ( char* )&new_conn, sizeof( new_conn ), 0 );
                send( m_sub_process[i].m_pipefd[0], ( char* )&new_conn, sizeof( new_conn ), 0 );
                printf( "send request to child %d\n", i );
                //sub_process_counter %= m_process_number;
            }
            else if( ( sockfd == sig_pipefd[0] ) && ( events[i].events & EPOLLIN ) )
            {
                int sig;
                char signals[1024];
                ret = recv( sig_pipefd[0], signals, sizeof( signals ), 0 );
                if( ret <= 0 )
                {
                    continue;
                }
                else
                {
                    for( int i = 0; i < ret; ++i )
                    {
                        switch( signals[i] )
                        {
                            case SIGCHLD:
                            {
                                pid_t pid;
                                int stat;
                                while ( ( pid = waitpid( -1, &stat, WNOHANG ) ) > 0 )
                                {
                                    for( int i = 0; i < m_process_number; ++i )
                                    {
                                        if( m_sub_process[i].m_pid == pid )
                                        {
                                            printf( "child %d join\n", i );
                                            close( m_sub_process[i].m_pipefd[0] );
                                            m_sub_process[i].m_pid = -1;
                                        }
                                    }
                                }
                                m_stop = true;
                                for( int i = 0; i < m_process_number; ++i )
                                {
                                    if( m_sub_process[i].m_pid != -1 )
                                    {
                                        m_stop = false;
                                    }
                                }
                                break;
                            }
                            case SIGTERM:
                            case SIGINT:
                            {
                                printf( "kill all the clild now\n" );
                                for( int i = 0; i < m_process_number; ++i )
                                {
                                    int pid = m_sub_process[i].m_pid;
                                    if( pid != -1 )
                                    {
                                        kill( pid, SIGTERM );
                                    }
                                }
                                break;
                            }
                            default:
                            {
                                break;
                            }
                        }
                    }
                }
            }
            else
            {
                continue;
            }
        }
    }
    //close( m_listenfd );
    close( m_epollfd );
}
#endif

主程序的实现:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include "processpool.h"
class cgi_conn {
public:
    cgi_conn() : m_sockfd(-1), m_read_idx(-1)
    {
        memset(m_buf, 0, sizeof(m_buf));
    }
public:
    void init(int epollfd, int sockfd, const sockaddr_in& client_addr)
    {
        m_epollfd = epollfd;
        m_sockfd = sockfd;
        m_address = client_addr;
        m_read_idx = 0;
    }
    void process()
    {
        int idx = 0;
        int ret = 1;
        //循环读取和分析客户数据
        while(true) {
            idx = m_read_idx;
            ret = recv(m_sockfd, m_buf+idx, BUFFER_SIZE-1-idx, 0);
            printf("recv ret=%d\n", ret);
            //如果读操作发生错误,则关闭客户链接,如果只是暂时无数据可读,则退出循环
            if(ret < 0) {
                if(errno != EAGAIN) {
                    removefd(m_epollfd, m_sockfd);
                }
                break;
            }
            //如果对方关闭,本服务器也关闭
            else if(ret == 0) {
                removefd(m_epollfd, m_sockfd);
                break;
            }
            else {
                m_read_idx += ret;
                printf("user content is: %s", m_buf);
                //如果遇到字符CRLF,则开始处理客户请求
                for(; idx<m_read_idx; ++idx) {
                    if((idx >= 1) && (m_buf[idx-1] == '\r') && (m_buf[idx] == '\n')) //这里查找CRLF采用简单遍历已读数据的方法
                        break;
                }
            }
            //如果没有遇到字符CRLF,则需要读取更多客户数据
            if(idx == m_read_idx) {
                continue;
            }
            m_buf[idx-1] = '\0';
            char* file_name = m_buf;
            printf("file_name=%s\n", file_name);
            //判断客户要运行的CGI程序是否存在
            if(access(file_name, F_OK) == -1) {
                removefd(m_epollfd, m_sockfd);   //不存在就不连接了
                printf("file not found\n");
                break;
            }
            //创建子进程来执行CGI程序
            ret = fork();
            if(ret == -1) {
                removefd(m_epollfd, m_sockfd);
                break;
            }
            else if(ret > 0) {
                //父进程只需关闭连接
                removefd(m_epollfd, m_sockfd);
                break;   //父进程break
            }
            else {
                //子进程将标准输出定向到sockfd_,并执行CGI程序
                close(STDOUT_FILENO);
                dup(m_sockfd);
                execl(m_buf, m_buf, 0);
                exit(0);
            }
        }
    }
private:
    //读缓冲区的大小
    static const int BUFFER_SIZE = 1024;
    static int  m_epollfd;
    int         m_sockfd;
    sockaddr_in m_address;
    char        m_buf[BUFFER_SIZE];
    //标记缓冲区中已读入客户数据的最后一个字节的下一个位置
    int         m_read_idx;
};
int cgi_conn::m_epollfd = -1;
int main(int argc, char** argv)
{
    if (argc <= 2) {
        printf("usage: %s ip_address port_number\n", basename(argv[0]));
        //return -1;
    }
    const char* ip = "127.0.0.1";//argv[1];
    int port = 8011;//atoi(argv[2]);
    int listenfd = socket(AF_INET, SOCK_STREAM, 0);
    assert(listenfd >= 0);
    int ret = 0;
    struct sockaddr_in address;
    memset(&address, 0, sizeof(address));
    address.sin_family = AF_INET;
    address.sin_addr.s_addr = htonl(INADDR_ANY);//ok
    //inet_pton(AF_INET, ip, &servaddr.sin_addr);//使用"127.0.0.1",实体机windows客户端连接不进来虚拟机
    address.sin_port = htons(port);
    int on = 1;
    setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
    ret = bind(listenfd, (struct sockaddr*)&address, sizeof(address));
    if(ret == -1) {
        printf("what: %m\n");
        return -1;
    }
    ret = listen(listenfd, 5);
    assert(ret != -1);
    processpool<cgi_conn>* pool = processpool<cgi_conn>::create(listenfd);
    if(pool) {
        pool->run();
        delete pool;
    }
    close(listenfd);
    return 0;
}

2、cgi程序,假设编译生成的可执行文件名就叫“cgi”

#include <stdio.h>
int main()
{
    printf("hello,client");
    return 0;
}

3、测试

image.png


源码下载:http://download.csdn.net/download/libaineu2004/9976852


相关文章
|
2月前
|
Shell Linux
Linux shell编程学习笔记30:打造彩色的选项菜单
Linux shell编程学习笔记30:打造彩色的选项菜单
|
23天前
|
运维 监控 Shell
深入理解Linux系统下的Shell脚本编程
【10月更文挑战第24天】本文将深入浅出地介绍Linux系统中Shell脚本的基础知识和实用技巧,帮助读者从零开始学习编写Shell脚本。通过本文的学习,你将能够掌握Shell脚本的基本语法、变量使用、流程控制以及函数定义等核心概念,并学会如何将这些知识应用于实际问题解决中。文章还将展示几个实用的Shell脚本例子,以加深对知识点的理解和应用。无论你是运维人员还是软件开发者,这篇文章都将为你提供强大的Linux自动化工具。
|
2月前
|
Shell Linux
Linux shell编程学习笔记82:w命令——一览无余
Linux shell编程学习笔记82:w命令——一览无余
|
2月前
|
Linux Shell
Linux系统编程:掌握popen函数的使用
记得在使用完 `popen`打开的流后,总是使用 `pclose`来正确关闭它,并回收资源。这种做法符合良好的编程习惯,有助于保持程序的健壮性和稳定性。
100 6
|
2月前
|
Linux Shell
Linux系统编程:掌握popen函数的使用
记得在使用完 `popen`打开的流后,总是使用 `pclose`来正确关闭它,并回收资源。这种做法符合良好的编程习惯,有助于保持程序的健壮性和稳定性。
142 3
|
2月前
|
Shell Linux Python
python执行linux系统命令的几种方法(python3经典编程案例)
文章介绍了多种使用Python执行Linux系统命令的方法,包括使用os模块的不同函数以及subprocess模块来调用shell命令并处理其输出。
39 0
|
3月前
|
项目管理 敏捷开发 开发框架
敏捷与瀑布的对决:解析Xamarin项目管理中如何运用敏捷方法提升开发效率并应对市场变化
【8月更文挑战第31天】在数字化时代,项目管理对软件开发至关重要,尤其是在跨平台框架 Xamarin 中。本文《Xamarin 项目管理:敏捷方法的应用》通过对比传统瀑布方法与敏捷方法,揭示敏捷在 Xamarin 项目中的优势。瀑布方法按线性顺序推进,适用于需求固定的小型项目;而敏捷方法如 Scrum 则强调迭代和增量开发,更适合需求多变、竞争激烈的环境。通过详细分析两种方法在 Xamarin 项目中的实际应用,本文展示了敏捷方法如何提高灵活性、适应性和开发效率,使其成为 Xamarin 项目成功的利器。
53 1
|
监控 安全 物联网
趋势科技:恶意软件利用Linux CGI 漏洞进行传播
本文讲的是趋势科技:恶意软件利用Linux CGI 漏洞进行传播,Linux一直是企业平台和物联网制造商的首选操作系统,基于Linux的设备也被不断部署在许多不同行业的智能系统中,不过随着其广泛使用,我们也看到了以Linux为攻击目标的安全威胁数量正在快速上升。
1755 0
|
7天前
|
监控 Linux
如何检查 Linux 内存使用量是否耗尽?这 5 个命令堪称绝了!
本文介绍了在Linux系统中检查内存使用情况的5个常用命令:`free`、`top`、`vmstat`、`pidstat` 和 `/proc/meminfo` 文件,帮助用户准确监控内存状态,确保系统稳定运行。
67 6
|
8天前
|
Linux
在 Linux 系统中,“cd”命令用于切换当前工作目录
在 Linux 系统中,“cd”命令用于切换当前工作目录。本文详细介绍了“cd”命令的基本用法和常见技巧,包括使用“.”、“..”、“~”、绝对路径和相对路径,以及快速切换到上一次工作目录等。此外,还探讨了高级技巧,如使用通配符、结合其他命令、在脚本中使用,以及实际应用案例,帮助读者提高工作效率。
34 3
下一篇
无影云桌面