NVIDIA之AI Course:Getting Started with AI on Jetson Nano—Class notes(一)

简介: NVIDIA之AI Course:Getting Started with AI on Jetson Nano—Class notes(一)

Getting Started with AI on Jetson Nano


Welcome

Setting up your Jetson Nano

Image Classification

Image Regression

Conclusion

Feedback

Welcome


Welcome to Getting Started with AI on Jetson Nano! In this course, you will build AI projects on your own NVIDIA® Jetson Nano. You'll learn how to:


Set up your Jetson Nano Developer Kit and camera to run this course

Collect varied data for image classification projects

Train neural network models for classification

Annotate image data for regression

Train neural network models for regression to localize features

Run inference on a live camera feed with your trained models



Working Through The Course




     Throughout the course you'll work in two browser windows. The first window is the one you are viewing now. It contains the course pages you'll use for a guided learning experience, hosted on the NVIDIA® Deep Learning Institute (DLI) platform. This is where you'll find instructions, references, and quizzes. You can also track your progress toward earning a Certificate of Competency for the course.

     The second browser window contains a remote JupyterLab interface into your Jetson Nano. You'll begin with some hardware setup in the Setting up your Jetson Nano section, and then open this window in your computer browser. This JupyterLab window is where you'll run Python code interactively in Jupyter notebooks to view the camera feed and build your AI Classification and Regression projects. The Jupyter notebooks you'll work with are easy to copy, change, experiment with, and extend for your own additional projects whenever you are ready to do so!

     Let's get started! The following video provides a brief overview of the Jetson Nano Developer Kit product.


       在整个课程中,您将在两个浏览器窗口中工作。第一个窗口是您现在正在查看的窗口。它包含在Nvidia®深度学习学院(DLI)平台上举办的引导式学习体验课程页面。在这里您可以找到说明、参考资料和测验。您还可以跟踪您获得课程合格证书的进度。

        第二个浏览器窗口在Jetson nano中包含远程jupyterlab界面。您将从设置Jetson nano部分中的一些硬件设置开始,然后在计算机浏览器中打开此窗口。在这个jupyterlab窗口中,您将在jupyter笔记本中交互运行python代码,以查看摄像头提要并构建人工智能分类和回归项目。你将要使用的Jupyter笔记本很容易复制、更改、实验,并且在你准备好的时候扩展到你自己的附加项目中。

        我们开始吧!以下视频简要概述了Jetson nano开发工具包产品。



Course Outline课程大纲


The course consists of three main sections. Use the navigation and breadcrumb links at the top of each section to step through the lessons.

该课程由三个主要部分组成。使用每个部分顶部的导航和breadcrumb链接来逐步完成课程。


1. Setting Up Your Jetson Nano

Step-by-step guide to set up your hardware and software for the course projects

一步一步的指导,设置您的硬件和软件的课程项目。


Introduction:What's included with the Jetson Nano Developer Kit

Prepare for Setup:Descriptions of additional hardware you need to get started

Write Image to the MicroSD Card:How to download the software for this course and make it available to the Jetson Nano Developer Kit

Setup and First Boot:Illustrated step-by-step instructions to boot your Jetson Nano with the complete OS image and course software

Camera Setup:How to connect your camera to the Jetson Nano Developer Kit

Hello Camera:How to test your camera with an interactive Jupyter notebook on the Jetson Nano Developer Kit

JupyterLab:A brief introduction to the JupyterLab interface and notebooks

2. Image Classification图像分类

Background information and instructions to create projects that classify images using Deep Learning

创建使用深度学习对图像进行分类的项目的背景信息和说明。


AI and Deep Learning:A brief overview of Deep Learning and how it relates to Artificial Intelligence (AI)

Convolutional Neural Networks (CNNs):An introduction to the dominant class of artificial neural networks for computer vision tasks

ResNet-18:Specifics on the ResNet-18 network architecture used in the class projects

Thumbs Project:Work with the Interactive Classification notebook to create your first project

Emotions Project:Build a new project with the same Interactive notebook to detect emotions from facial expressions.建立一个新的项目相同的交互式笔记本检测情绪面部表情。

Quiz Questions:Answer questions about what you've learned to reinforce your knowledge.回答问题对你所学到的知识巩固你的知识

3. Image Regression 图像回归

Instructions to create projects that can localize and track image features in a live camera image. 介绍创建一个项目,可以本地化和跟踪实时摄像机图像中的图像功能。


Classification vs. Regression:With a few changes, your the Classification model can be converted to a Regression model.用一些小的改变,你的分类模型可以转化成一个回归模型。

Face XY Project:Build a project that finds the coordinates of facial features.建立一个项目,发现面部特征的坐标

Quiz Questions:Answer questions about what you've learned to reinforce your knowledge.回答问题对你所学到的知识巩固你的知识

 


相关文章
|
27天前
|
机器学习/深度学习 人工智能 机器人
AI Compass前沿速览:Nano Bananary、MCP Registry、通义DeepResearch 、VoxCPM、InternVLA·M1具身机器人
AI Compass前沿速览:Nano Bananary、MCP Registry、通义DeepResearch 、VoxCPM、InternVLA·M1具身机器人
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
Cosmos-Reason1:物理常识觉醒!NVIDIA 56B模型让AI懂重力+时空法则
Cosmos-Reason1是NVIDIA推出的多模态大语言模型系列,具备物理常识理解和具身推理能力,支持视频输入和长链思考,可应用于机器人、自动驾驶等场景。
237 8
Cosmos-Reason1:物理常识觉醒!NVIDIA 56B模型让AI懂重力+时空法则
|
人工智能 自然语言处理 Serverless
阿里云函数计算 x NVIDIA 加速企业 AI 应用落地
阿里云函数计算与 NVIDIA TensorRT/TensorRT-LLM 展开合作,通过结合阿里云的无缝计算体验和 NVIDIA 的高性能推理库,开发者能够以更低的成本、更高的效率完成复杂的 AI 任务,加速技术落地和应用创新。
734 16
|
7月前
|
人工智能 Kubernetes 安全
积极拥抱AI,F5携手NVIDIA赋能加速AI应用交付
积极拥抱AI,F5携手NVIDIA赋能加速AI应用交付
97 4
|
8月前
|
存储 人工智能 弹性计算
NVIDIA NIM on ACK:优化生成式AI模型的部署与管理
本文结合NVIDIA NIM和阿里云容器服务,提出了基于ACK的完整服务化管理方案,用于优化生成式AI模型的部署和管理。
|
人工智能 并行计算 数据中心
NVIDIA智算中心“产品”上市,AI工业革命的iPhone时刻
NVIDIA智算中心“产品”上市,AI工业革命的iPhone时刻
|
12月前
|
机器学习/深度学习 人工智能 算法
使用 NVIDIA TAO Toolkit 5.0 体验最新的视觉 AI 模型开发工作流程
NVIDIA TAO Toolkit 5.0 提供低代码框架,支持从新手到专家级别的用户快速开发视觉AI模型。新版本引入了开源架构、基于Transformer的预训练模型、AI辅助数据标注等功能,显著提升了模型开发效率和精度。TAO Toolkit 5.0 还支持多平台部署,包括GPU、CPU、MCU等,简化了模型训练和优化流程,适用于广泛的AI应用场景。
184 0
使用 NVIDIA TAO Toolkit 5.0 体验最新的视觉 AI 模型开发工作流程
|
6天前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
123 13
|
17天前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
273 23

热门文章

最新文章