Py之seaborn:seaborn库的简介、安装、使用方法之详细攻略

简介: Py之seaborn:seaborn库的简介、安装、使用方法之详细攻略

seaborn库的简介


   Seabn是一个在Python中制作有吸引力和丰富信息的统计图形的库。它构建在MatPultLB的顶部,与PyDATA栈紧密集成,包括对SIMPY和BANDA数据结构的支持以及SISPY和STATSMODEL的统计例程。


   Seaborn 其实是在matplotlib的基础上进行了更高级的 API 封装,从而使得作图更加容易 在大多数情况下使用seaborn就能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视为matplotlib的补充。Seabn是基于MatPultLB的Python可视化库。它为绘制有吸引力的统计图形提供了一个高级接口。


Official seaborn tutorial

Seaborn 官方介绍

seaborn: statistical data visualization


seaborn提供的一些特点是

在默认MatMattLIB美学中改进的几个内置主题:


1、选择颜色调色板的工具来绘制数据中的模式

2、用于可视化单变量和二变量分布或用于在数据子集之间进行比较的功能

3、拟合和可视化不同类型独立变量和因变量的线性回归模型的工具

4、可视化数据矩阵并使用聚类算法发现这些矩阵中的结构的函数

5、一种灵活估计统计时间序列数据的函数及其估计的不确定性表示

6、构造抽象网格的高级抽象,让您轻松地构建复杂的可视化



seaborn库的安装


pip install seaborn


image.png



seaborn库的使用方法


0、相关文章


Py之matplotlib:matplotlib、seaborn两种库绘图(封装函数)最强总结



1、案例应用


import numpy as np  

import seaborn as sns  

import matplotlib.pyplot as plt  

sns.set( palette="muted", color_codes=True)  

rs = np.random.RandomState(10)  

d = rs.normal(size=100)  

f, axes = plt.subplots(2, 2, figsize=(7, 7), sharex=True)  

plt.title('seaborn: statistical data visualization')

sns.distplot(d, kde=False, color="b", ax=axes[0, 0])  

sns.distplot(d, hist=False, rug=True, color="r", ax=axes[0, 1])  

sns.distplot(d, hist=False, color="g", kde_kws={"shade": True}, ax=axes[1, 0])  

sns.distplot(d, color="m", ax=axes[1, 1])  

plt.show()  

参考官网:

seaborn 0.8.1


相关文章
|
2月前
|
存储 人工智能 测试技术
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
本文介绍如何使用LangChain结合DeepSeek实现多轮对话,测开人员可借此自动生成测试用例,提升自动化测试效率。
431 125
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
|
2月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
206 0
|
1月前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
212 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
1月前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
300 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
2月前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
380 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
3月前
|
运维 Linux 开发者
Linux系统中使用Python的ping3库进行网络连通性测试
以上步骤展示了如何利用 Python 的 `ping3` 库来检测网络连通性,并且提供了基本错误处理方法以确保程序能够优雅地处理各种意外情形。通过简洁明快、易读易懂、实操性强等特点使得该方法非常适合开发者或系统管理员快速集成至自动化工具链之内进行日常运维任务之需求满足。
231 18
|
Python
pip批量安装Python库 requirement.txt 离线环境无互联网环境下pip安装Python库
pip批量安装Python库 requirement.txt 离线环境无互联网环境下pip安装Python库
809 3
|
开发工具 git Python
安装和使用`libnum`是一个用于数字理论函数的Python库
【6月更文挑战第19天】`libnum`是Python的数字理论函数库。安装可通过`git clone`,进入目录后运行`python setup.py install`,也可用`pip install libnum`。示例:使用`int_to_hex`将十进制数42转换为十六进制字符串'2a'。注意,信息可能已过时,应查最新文档以确保准确性。如遇问题,参考GitHub仓库或寻求社区帮助。
337 1
确保你已经安装了`python-barcode`库。如果没有,可以通过pip来安装:
确保你已经安装了`python-barcode`库。如果没有,可以通过pip来安装:

推荐镜像

更多