新零售空间数据库实践一例 - PostGIS 点面叠加视觉判断输出

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介:

标签

PostgreSQL , 点面视觉输出 , subquery , nestloop join , 空间索引 , gist


背景

在新零售、快递等行业,有大量的点数据(例如包裹位置、快递员位置、仓库位置等),同时有大量的面数据(如小区,商圈,写字楼等)。

如何判断实时的正在配送的包裹落在哪个面呢?并且将之联系起来。

这个从视觉角度来思考,非常简单。

例如有一个地图,将其划分为若干个面(例如前面提到的小区)。

pic

然后有一些小点,这些是POINT数据。

pic

我们从图上一眼就能看出每个点落在哪个小区(面)里面。

在数据库中,这可能是两份数据(一份为点,一份为面)。输出的实际上是点+面(ID)的数据。

怎么做到高效的输出呢?

DEMO

搜索某些订单,当前处于哪个面。这是非常典型的点面判断需求。

接下来的例子,有25万个面,查询若干笔订单属于哪个面。

1、创建、生成静态的面数据(通常面的数据是静态的,例如小区,商圈,大楼,仓库覆盖范围等)

postgres=# create table t2(id int, pos box);  
CREATE TABLE  
  
-- 在(0,0)到(500,500)的平面上,划分成251001个正方形的小面。  
  
postgres=# do language plpgsql $$    
declare  
x int;  
y int;  
begin  
for x in 0..500 loop  
for y in 0..500 loop   
  insert into t2 values (x+y, box(point(x,y),point(x+1,y+1)));  
end loop;  
end loop;  
end;  
$$;  
DO  
  
postgres=# select count(*) from t2;  
 count    
--------  
 251001  
(1 row)  

创建空间索引

postgres=# create index idx_t2 on t2 using gist(pos);
CREATE INDEX

2、创建、生成点的数据。

postgres=# create table t1(id int, pos point);  
CREATE TABLE  
-- 在(0,0),(500,500)的平面上,生成10000个随机的点  
  
postgres=# insert into t1 select id, point(random()*500, random()*500) from generate_series(1,10000) t(id);  
INSERT 0 10000  

3、查询每个点,属于哪个面。

方法1,JOIN

postgres=# explain analyze select t1.*,t2.* from t1 join t2 on (t2.pos @> box(t1.pos, t1.pos));  
                                                       QUERY PLAN                                                         
------------------------------------------------------------------------------------------------------------------------  
 Nested Loop  (cost=0.29..73322.20 rows=2510010 width=56) (actual time=0.094..1191.076 rows=10000 loops=1)  
   ->  Seq Scan on t1  (cost=0.00..116.00 rows=10000 width=20) (actual time=0.020..1.047 rows=10000 loops=1)  
   ->  Index Scan using idx_t2 on t2  (cost=0.29..4.81 rows=251 width=36) (actual time=0.039..0.118 rows=1 loops=10000)  
         Index Cond: (pos @> box(t1.pos, t1.pos))  
 Planning time: 0.102 ms  
 Execution time: 1191.619 ms  
(6 rows)  

方法2,SUBQUERY

postgres=# explain analyze select t1.*, (select t2 from t2 where t2.pos @> box(t1.pos,t1.pos) limit 1) from t1;  
                                                            QUERY PLAN                                                              
----------------------------------------------------------------------------------------------------------------------------------  
 Seq Scan on t1  (cost=0.00..13706.74 rows=10000 width=52) (actual time=0.077..427.466 rows=10000 loops=1)  
   SubPlan 1  
     ->  Limit  (cost=0.29..1.36 rows=1 width=60) (actual time=0.042..0.042 rows=1 loops=10000)  
           ->  Index Scan using idx_t2 on t2  (cost=0.29..269.88 rows=251 width=60) (actual time=0.042..0.042 rows=1 loops=10000)  
                 Index Cond: (pos @> box(t1.pos, t1.pos))  
 Planning time: 0.080 ms  
 Execution time: 427.942 ms  
(7 rows)  

如果是1000笔订单,返回差不多40毫秒

postgres=# explain (analyze,verbose,timing,costs,buffers) select t1.*, (select t2 from t2 where t2.pos @> box(t1.pos,t1.pos) limit 1) from t1 limit 1000;
                                                                  QUERY PLAN                                                                  
----------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=0.00..1370.67 rows=1000 width=52) (actual time=0.069..39.754 rows=1000 loops=1)
   Output: t1.id, t1.pos, ((SubPlan 1))
   Buffers: shared hit=3002
   ->  Seq Scan on public.t1  (cost=0.00..13706.74 rows=10000 width=52) (actual time=0.069..39.658 rows=1000 loops=1)
         Output: t1.id, t1.pos, (SubPlan 1)
         Buffers: shared hit=3002
         SubPlan 1
           ->  Limit  (cost=0.29..1.36 rows=1 width=60) (actual time=0.039..0.039 rows=1 loops=1000)
                 Output: t2.*
                 Buffers: shared hit=3000
                 ->  Index Scan using idx_t2 on public.t2  (cost=0.29..269.88 rows=251 width=60) (actual time=0.039..0.039 rows=1 loops=1000)
                       Output: t2.*
                       Index Cond: (t2.pos @> box(t1.pos, t1.pos))
                       Buffers: shared hit=3000
 Planning time: 0.066 ms
 Execution time: 39.830 ms
(16 rows)

因为@>暂时不支持hash join,因此subquery更优一些。

本文没有用到PostGIS空间数据库插件,而是使用了内置的平面几何类型,用于演示。

真实场景请使用PostGIS。

http://postgis.net/

例如

select  t1.*, (select t2 from t2 where ST_Within(t1.geom, t2.geom) limit 1) from t1;

小结

点面判断在GIS信息崛起的今天,在越来越多的企业中成为了非常常见的需求,比如文中提到的。

PostgreSQL在空间数据库领域有非常丰富的应用,从科研、军工、商业到民用,无处不在。

结合空间索引,BRIN索引实现空间数据的高效率检索是很轻松的事情。

目录
相关文章
|
4天前
|
NoSQL Cloud Native atlas
探索云原生数据库:MongoDB Atlas 的实践与思考
【10月更文挑战第21天】本文探讨了MongoDB Atlas的核心特性、实践应用及对云原生数据库未来的思考。MongoDB Atlas作为MongoDB的云原生版本,提供全球分布式、完全托管、弹性伸缩和安全合规等优势,支持快速部署、数据全球化、自动化运维和灵活定价。文章还讨论了云原生数据库的未来趋势,如架构灵活性、智能化运维和混合云支持,并分享了实施MongoDB Atlas的最佳实践。
|
5天前
|
NoSQL Cloud Native atlas
探索云原生数据库:MongoDB Atlas 的实践与思考
【10月更文挑战第20天】本文探讨了MongoDB Atlas的核心特性、实践应用及对未来云原生数据库的思考。MongoDB Atlas作为云原生数据库服务,具备全球分布、完全托管、弹性伸缩和安全合规等优势,支持快速部署、数据全球化、自动化运维和灵活定价。文章还讨论了实施MongoDB Atlas的最佳实践和职业心得,展望了云原生数据库的发展趋势。
|
7天前
|
SQL Java 数据库
Spring Boot与Flyway:数据库版本控制的自动化实践
【10月更文挑战第19天】 在软件开发中,数据库的版本控制是一个至关重要的环节,它确保了数据库结构的一致性和项目的顺利迭代。Spring Boot结合Flyway提供了一种自动化的数据库版本控制解决方案,极大地简化了数据库迁移管理。本文将详细介绍如何使用Spring Boot和Flyway实现数据库版本的自动化控制。
10 2
|
21天前
|
SQL 关系型数据库 MySQL
Go语言项目高效对接SQL数据库:实践技巧与方法
在Go语言项目中,与SQL数据库进行对接是一项基础且重要的任务
30 11
|
20天前
|
SQL 存储 关系型数据库
添加数据到数据库的SQL语句详解与实践技巧
在数据库管理中,添加数据是一个基本操作,它涉及到向表中插入新的记录
|
20天前
|
Rust 前端开发 关系型数据库
Tauri 开发实践 — Tauri 集成本地数据库
本文介绍了在 Tauri 框架中集成本地数据库的几种方案,包括直接绑定 SQLite、使用第三方数据库库和使用 tauri-plugin-sql-api 插件。最终选择了 tauri-plugin-sql-api,因为它集成简单、支持多种数据库类型,并且与 Tauri 框架深度整合,提升了开发效率和安全性。文章详细介绍了如何安装和使用该插件,以及如何编写核心代码实现数据库操作。
90 2
|
24天前
|
SQL 关系型数据库 数据库
SQL数据库:核心原理与应用实践
随着信息技术的飞速发展,数据库管理系统已成为各类组织和企业中不可或缺的核心组件。在众多数据库管理系统中,SQL(结构化查询语言)数据库以其强大的数据管理能力和灵活性,广泛应用于各类业务场景。本文将深入探讨SQL数据库的基本原理、核心特性以及实际应用。一、SQL数据库概述SQL数据库是一种关系型数据库
22 5
|
23天前
|
SQL 开发框架 .NET
ASP连接SQL数据库:从基础到实践
随着互联网技术的快速发展,数据库与应用程序之间的连接成为了软件开发中的一项关键技术。ASP(ActiveServerPages)是一种在服务器端执行的脚本环境,它能够生成动态的网页内容。而SQL数据库则是一种关系型数据库管理系统,广泛应用于各类网站和应用程序的数据存储和管理。本文将详细介绍如何使用A
37 3
|
27天前
|
关系型数据库 数据挖掘 数据库
解析数据库联结:应用与实践中的 INNER JOIN、LEFT JOIN、RIGHT JOIN、FULL OUTER JOIN 与 CROSS JOIN
解析数据库联结:应用与实践中的 INNER JOIN、LEFT JOIN、RIGHT JOIN、FULL OUTER JOIN 与 CROSS JOIN
41 1
|
2月前
|
消息中间件 缓存 监控
优化微服务架构中的数据库访问:策略与实践
随着微服务架构的普及,如何高效管理和优化数据库访问成为了关键挑战。本文探讨了在微服务环境中优化数据库访问的策略,包括数据库分片、缓存机制、异步处理等技术手段。通过深入分析实际案例和最佳实践,本文旨在为开发者提供实际可行的解决方案,以提升系统性能和可扩展性。