《深入理解Spring》性能监控与优化——构建高性能应用的艺术

简介: 本文系统介绍了Spring生态下的性能监控与优化实践,涵盖监控体系构建、数据库调优、缓存策略、线程池配置及性能测试等内容,强调通过数据驱动、分层优化和持续迭代提升应用性能。

1. 引言:性能优化在现代应用中的重要性

在当今高速发展的数字时代,应用性能直接影响用户体验、业务转化率和系统可靠性。一个响应缓慢的应用不仅会导致用户流失,还可能造成巨大的商业损失。研究表明,页面加载时间每增加1秒,转化率就会下降7%,而超过3秒的延迟会导致40%的用户放弃使用。

Spring生态系统提供了一套完整的性能监控和优化解决方案,从代码级别的优化建议到生产环境的实时监控,帮助开发者构建高性能、高可用的应用程序。

比喻:应用性能优化就像F1赛车的调校过程。监控系统(如Actuator)是车上的传感器和仪表盘,实时收集各项数据;优化技巧则是工程师根据数据进行的精准调校,包括发动机调优(代码优化)、空气动力学改进(架构优化)和轮胎选择(资源配置),最终目标是让赛车在赛道上发挥最佳性能。

2. Spring性能监控体系

2.1 Spring Boot Actuator:应用监控的核心

Spring Boot Actuator是Spring生态中最重要的监控工具,它提供了丰富的生产就绪特性:


<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
    <groupId>io.micrometer</groupId>
    <artifactId>micrometer-registry-prometheus</artifactId>
</dependency>

基础配置:


management:
  endpoints:
    web:
      exposure:
        include: health, info, metrics, prometheus
  endpoint:
    health:
      show-details: always
    metrics:
      enabled: true
  metrics:
    export:
      prometheus:
        enabled: true
    tags:
      application: ${spring.application.name}

2.2 监控体系架构

Spring性能监控体系采用分层架构,如下图所示:

3. 实战演练:构建完整的监控体系

3.1 应用健康监控

自定义健康检查指示器:


@Component
public class CustomHealthIndicator extends AbstractHealthIndicator {
    
    private final DatabaseService databaseService;
    private final CacheService cacheService;
    
    public CustomHealthIndicator(DatabaseService databaseService, CacheService cacheService) {
        this.databaseService = databaseService;
        this.cacheService = cacheService;
    }
    
    @Override
    protected void doHealthCheck(Health.Builder builder) throws Exception {
        // 检查数据库连接
        boolean dbHealthy = databaseService.isConnected();
        // 检查缓存状态
        boolean cacheHealthy = cacheService.isAvailable();
        
        if (dbHealthy && cacheHealthy) {
            builder.up()
                   .withDetail("database", "connected")
                   .withDetail("cache", "available")
                   .withDetail("timestamp", Instant.now());
        } else {
            builder.down()
                   .withDetail("database", dbHealthy ? "connected" : "disconnected")
                   .withDetail("cache", cacheHealthy ? "available" : "unavailable")
                   .withException(new RuntimeException("Service degradation"));
        }
    }
}

3.2 指标收集与暴露

自定义业务指标:


@Service
public class OrderService {
    
    private final MeterRegistry meterRegistry;
    private final Timer orderProcessingTimer;
    private final Counter failedOrderCounter;
    private final DistributionSummary orderAmountSummary;
    
    public OrderService(MeterRegistry meterRegistry) {
        this.meterRegistry = meterRegistry;
        this.orderProcessingTimer = Timer.builder("order.processing.time")
                .description("订单处理时间")
                .tags("service", "order")
                .register(meterRegistry);
        
        this.failedOrderCounter = Counter.builder("order.failed.count")
                .description("失败订单数量")
                .tags("service", "order")
                .register(meterRegistry);
        
        this.orderAmountSummary = DistributionSummary.builder("order.amount.summary")
                .description("订单金额分布")
                .baseUnit("USD")
                .register(meterRegistry);
    }
    
    @Transactional
    public Order processOrder(OrderRequest request) {
        return orderProcessingTimer.record(() -> {
            try {
                // 业务处理逻辑
                validateOrder(request);
                Order order = createOrder(request);
                processPayment(order);
                
                // 记录订单金额
                orderAmountSummary.record(order.getAmount().doubleValue());
                
                return order;
            } catch (Exception e) {
                // 记录失败指标
                failedOrderCounter.increment();
                throw new OrderProcessingException("订单处理失败", e);
            }
        });
    }
    
    // 方法级别的监控
    @Timed(value = "order.validation.time", description = "订单验证时间")
    private void validateOrder(OrderRequest request) {
        // 验证逻辑
    }
    
    @Timed(value = "order.creation.time", description = "订单创建时间")
    private Order createOrder(OrderRequest request) {
        // 创建逻辑
        return new Order();
    }
}

3.3 分布式追踪集成

集成Micrometer Tracing:


management:
  tracing:
    sampling:
      probability: 1.0
  zipkin:
    base-url: http://localhost:9411


@Configuration
public class TracingConfig {
    
    @Bean
    public ObservationHandler<Observation.Context> customObservationHandler() {
        return new ObservationHandler<>() {
            @Override
            public boolean supportsContext(Observation.Context context) {
                return true;
            }
            
            @Override
            public void onStart(Observation.Context context) {
                context.put("startTime", System.currentTimeMillis());
                log.info("Starting observation: {}", context.getName());
            }
            
            @Override
            public void onStop(Observation.Context context) {
                long duration = System.currentTimeMillis() - (Long) context.get("startTime");
                log.info("Completed observation: {} in {}ms", context.getName(), duration);
            }
        };
    }
}

4. 性能优化实战技巧

4.1 数据库性能优化

JPA/Hibernate优化:


@Configuration
public class JpaOptimizationConfig {
    
    @Bean
    public LocalContainerEntityManagerFactoryBean entityManagerFactory(DataSource dataSource) {
        LocalContainerEntityManagerFactoryBean em = new LocalContainerEntityManagerFactoryBean();
        em.setDataSource(dataSource);
        em.setPackagesToScan("com.example.entity");
        
        JpaVendorAdapter vendorAdapter = new HibernateJpaVendorAdapter();
        em.setJpaVendorAdapter(vendorAdapter);
        
        Properties properties = new Properties();
        properties.setProperty("hibernate.hbm2ddl.auto", "validate");
        properties.setProperty("hibernate.dialect", "org.hibernate.dialect.MySQL8Dialect");
        properties.setProperty("hibernate.show_sql", "false");
        properties.setProperty("hibernate.format_sql", "true");
        properties.setProperty("hibernate.use_sql_comments", "true");
        properties.setProperty("hibernate.jdbc.batch_size", "50");
        properties.setProperty("hibernate.order_inserts", "true");
        properties.setProperty("hibernate.order_updates", "true");
        properties.setProperty("hibernate.jdbc.fetch_size", "100");
        properties.setProperty("hibernate.default_batch_fetch_size", "16");
        properties.setProperty("hibernate.cache.use_second_level_cache", "true");
        properties.setProperty("hibernate.cache.use_query_cache", "true");
        properties.setProperty("hibernate.cache.region.factory_class", 
            "org.hibernate.cache.ehcache.EhCacheRegionFactory");
        
        em.setJpaProperties(properties);
        return em;
    }
}

查询优化示例:


@Repository
@Slf4j
public class OptimizedUserRepository {
    
    @PersistenceContext
    private EntityManager entityManager;
    
    // 使用DTO投影减少数据传输
    public List<UserDTO> findActiveUsersWithProjection() {
        return entityManager.createQuery(
                "SELECT new com.example.dto.UserDTO(u.id, u.username, u.email) " +
                "FROM User u WHERE u.active = true", UserDTO.class)
                .setHint("org.hibernate.readOnly", true)
                .getResultList();
    }
    
    // 批量处理优化
    @Transactional
    public void batchInsertUsers(List<User> users) {
        for (int i = 0; i < users.size(); i++) {
            entityManager.persist(users.get(i));
            if (i % 50 == 0) { // 每50条刷新一次
                entityManager.flush();
                entityManager.clear();
            }
        }
    }
    
    // 使用EntityGraph解决N+1问题
    public List<User> findUsersWithOrders() {
        EntityGraph<User> graph = entityManager.createEntityGraph(User.class);
        graph.addSubgraph("orders");
        
        return entityManager.createQuery("SELECT u FROM User u", User.class)
                .setHint("javax.persistence.fetchgraph", graph)
                .getResultList();
    }
}

4.2 缓存优化策略

多级缓存配置:


@Configuration
@EnableCaching
public class CacheConfig {
    
    @Bean
    public CacheManager cacheManager() {
        CaffeineCacheManager cacheManager = new CaffeineCacheManager();
        cacheManager.setCaffeine(caffeineCacheBuilder());
        cacheManager.setCacheNames(Arrays.asList("users", "products", "orders"));
        return cacheManager;
    }
    
    Caffeine<Object, Object> caffeineCacheBuilder() {
        return Caffeine.newBuilder()
                .initialCapacity(100)
                .maximumSize(500)
                .expireAfterAccess(10, TimeUnit.MINUTES)
                .recordStats();
    }
    
    @Bean
    public RedisCacheManager redisCacheManager(RedisConnectionFactory redisConnectionFactory) {
        RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig()
                .entryTtl(Duration.ofHours(1))
                .serializeKeysWith(RedisSerializationContext.SerializationPair
                        .fromSerializer(new StringRedisSerializer()))
                .serializeValuesWith(RedisSerializationContext.SerializationPair
                        .fromSerializer(new GenericJackson2JsonRedisSerializer()));
        
        return RedisCacheManager.builder(redisConnectionFactory)
                .cacheDefaults(config)
                .transactionAware()
                .build();
    }
}

缓存使用最佳实践:


@Service
@Slf4j
public class CachedUserService {
    
    private final UserRepository userRepository;
    
    public CachedUserService(UserRepository userRepository) {
        this.userRepository = userRepository;
    }
    
    @Cacheable(value = "users", key = "#id", unless = "#result == null")
    public User getUserById(Long id) {
        log.info("Fetching user from database: {}", id);
        return userRepository.findById(id).orElse(null);
    }
    
    @CacheEvict(value = "users", key = "#user.id")
    public User updateUser(User user) {
        return userRepository.save(user);
    }
    
    @Caching(evict = {
        @CacheEvict(value = "users", key = "#id"),
        @CacheEvict(value = "userLists", allEntries = true)
    })
    public void deleteUser(Long id) {
        userRepository.deleteById(id);
    }
    
    @Cacheable(value = "userLists", keyGenerator = "customKeyGenerator")
    public List<User> getActiveUsers() {
        return userRepository.findByActiveTrue();
    }
}

4.3 线程池与异步处理优化

线程池精细化配置:


@Configuration
@EnableAsync
public class AsyncConfig implements AsyncConfigurer {
    
    @Override
    public Executor getAsyncExecutor() {
        ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
        executor.setCorePoolSize(10);
        executor.setMaxPoolSize(50);
        executor.setQueueCapacity(100);
        executor.setThreadNamePrefix("async-");
        executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
        executor.setWaitForTasksToCompleteOnShutdown(true);
        executor.setAwaitTerminationSeconds(60);
        executor.initialize();
        return executor;
    }
    
    @Bean("ioExecutor")
    public Executor ioIntensiveExecutor() {
        ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
        executor.setCorePoolSize(20);
        executor.setMaxPoolSize(100);
        executor.setQueueCapacity(200);
        executor.setThreadNamePrefix("io-");
        executor.initialize();
        return executor;
    }
    
    @Bean("cpuExecutor")
    public Executor cpuIntensiveExecutor() {
        ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
        executor.setCorePoolSize(Runtime.getRuntime().availableProcessors());
        executor.setMaxPoolSize(Runtime.getRuntime().availableProcessors() * 2);
        executor.setThreadNamePrefix("cpu-");
        executor.initialize();
        return executor;
    }
}

异步处理示例:


@Service
@Slf4j
public class AsyncProcessingService {
    
    @Async("ioExecutor")
    public CompletableFuture<String> processImageAsync(String imagePath) {
        return CompletableFuture.supplyAsync(() -> {
            try {
                // 模拟耗时IO操作
                Thread.sleep(1000);
                return "Processed: " + imagePath;
            } catch (InterruptedException e) {
                Thread.currentThread().interrupt();
                throw new RuntimeException("Processing interrupted", e);
            }
        });
    }
    
    @Async("cpuExecutor")
    public CompletableFuture<BigDecimal> calculateAsync(BigDecimal input) {
        return CompletableFuture.supplyAsync(() -> {
            // CPU密集型计算
            BigDecimal result = input;
            for (int i = 0; i < 1000; i++) {
                result = result.multiply(BigDecimal.valueOf(1.01));
            }
            return result;
        });
    }
    
    @Async
    @Timed(value = "async.operation.time", description = "异步操作时间")
    public void asyncOperationWithMonitoring() {
        // 带有监控的异步操作
    }
}

5. 高级监控与诊断

5.1 APM集成(Application Performance Monitoring)

集成New Relic或AppDynamics:


# application.yml
newrelic:
  config:
    app_name: ${spring.application.name}
    license_key: ${NEW_RELIC_LICENSE_KEY}

自定义APM指标:


@Component
public class CustomAPMAgent {
    
    private final MeterRegistry meterRegistry;
    private final NewRelic newRelic;
    
    public CustomAPMAgent(MeterRegistry meterRegistry, NewRelic newRelic) {
        this.meterRegistry = meterRegistry;
        this.newRelic = newRelic;
    }
    
    public void recordBusinessTransaction(String name, long duration) {
        // Micrometer记录
        Timer.builder("business.transaction")
                .tags("name", name)
                .register(meterRegistry)
                .record(duration, TimeUnit.MILLISECONDS);
        
        // New Relic记录
        newRelic.recordMetric("Custom/BusinessTransaction/" + name, duration);
    }
}

5.2 内存分析与GC调优

JVM参数优化:


# 启动参数示例
java -jar application.jar \
-Xms2g -Xmx2g \
-XX:+UseG1GC \
-XX:MaxGCPauseMillis=200 \
-XX:InitiatingHeapOccupancyPercent=35 \
-XX:+ExplicitGCInvokesConcurrent \
-XX:+PrintGC \
-XX:+PrintGCDetails \
-XX:+PrintGCTimeStamps \
-XX:+PrintGCDateStamps \
-XX:+PrintGCApplicationStoppedTime \
-Xloggc:gc.log \
-XX:+UseStringDeduplication \
-XX:+HeapDumpOnOutOfMemoryError \
-XX:HeapDumpPath=./heapdump.hprof

内存监控端点:


@RestController
@RequestMapping("/api/diagnostics")
public class DiagnosticsController {
    
    @GetMapping("/memory")
    public Map<String, Object> memoryInfo() {
        MemoryMXBean memoryMXBean = ManagementFactory.getMemoryMXBean();
        Runtime runtime = Runtime.getRuntime();
        
        Map<String, Object> info = new HashMap<>();
        info.put("heapUsed", memoryMXBean.getHeapMemoryUsage().getUsed());
        info.put("heapMax", memoryMXBean.getHeapMemoryUsage().getMax());
        info.put("nonHeapUsed", memoryMXBean.getNonHeapMemoryUsage().getUsed());
        info.put("totalMemory", runtime.totalMemory());
        info.put("freeMemory", runtime.freeMemory());
        info.put("memoryUsage", (runtime.totalMemory() - runtime.freeMemory()) * 100 / runtime.totalMemory());
        
        return info;
    }
    
    @GetMapping("/gc")
    public List<Map<String, Object>> gcInfo() {
        List<GarbageCollectorMXBean> gcBeans = ManagementFactory.getGarbageCollectorMXBeans();
        return gcBeans.stream().map(bean -> {
            Map<String, Object> gcInfo = new HashMap<>();
            gcInfo.put("name", bean.getName());
            gcInfo.put("collectionCount", bean.getCollectionCount());
            gcInfo.put("collectionTime", bean.getCollectionTime());
            return gcInfo;
        }).collect(Collectors.toList());
    }
}

6. 性能测试与基准评估

6.1 JMH基准测试

集成JMH进行微基准测试:


<dependency>
    <groupId>org.openjdk.jmh</groupId>
    <artifactId>jmh-core</artifactId>
    <version>1.35</version>
    <scope>test</scope>
</dependency>
<dependency>
    <groupId>org.openjdk.jmh</groupId>
    <artifactId>jmh-generator-annprocess</artifactId>
    <version>1.35</version>
    <scope>test</scope>
</dependency>

基准测试示例:


@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MICROSECONDS)
@State(Scope.Benchmark)
@Warmup(iterations = 3, time = 1)
@Measurement(iterations = 5, time = 1)
@Fork(2)
public class ServiceBenchmark {
    
    private UserService userService;
    private OrderService orderService;
    
    @Setup
    public void setup() {
        // 初始化测试环境
        userService = new UserService();
        orderService = new OrderService();
    }
    
    @Benchmark
    public User benchmarkUserCreation() {
        return userService.createUser("test@example.com");
    }
    
    @Benchmark
    public Order benchmarkOrderProcessing() {
        return orderService.processOrder(createTestOrder());
    }
    
    private OrderRequest createTestOrder() {
        return new OrderRequest("test@example.com", BigDecimal.valueOf(100.0));
    }
}

6.2 负载测试与压力测试

使用Gatling进行负载测试:


import io.gatling.core.Predef._
import io.gatling.http.Predef._
import scala.concurrent.duration._
class LoadTest extends Simulation {
  
  val httpProtocol = http
    .baseUrl("http://localhost:8080")
    .acceptHeader("application/json")
  
  val scn = scenario("User Load Test")
    .exec(
      http("Create User")
        .post("/api/users")
        .body(StringBody("""{"email": "test${randomInt()}@example.com", "name": "Test User"}"""))
        .asJson
        .check(status.is(201))
    )
    .pause(1)
    .exec(
      http("Get Users")
        .get("/api/users")
        .check(status.is(200))
    )
  
  setUp(
    scn.inject(
      rampUsersPerSec(10).to(100).during(1.minute),
      constantUsersPerSec(100).during(5.minutes)
    ).protocols(httpProtocol)
  )
}

7. 常见性能问题与解决方案

7.1 内存泄漏诊断

内存泄漏检测模式:


@Component
public class MemoryLeakDetector {
    
    private final Map<String, byte[]> memoryMap = new HashMap<>();
    private final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);
    
    @PostConstruct
    public void startMonitoring() {
        scheduler.scheduleAtFixedRate(this::checkMemoryUsage, 1, 1, TimeUnit.MINUTES);
    }
    
    private void checkMemoryUsage() {
        MemoryUsage heapUsage = ManagementFactory.getMemoryMXBean().getHeapMemoryUsage();
        long usedMemory = heapUsage.getUsed();
        long maxMemory = heapUsage.getMax();
        
        double usagePercentage = (double) usedMemory / maxMemory * 100;
        
        if (usagePercentage > 80) {
            log.warn("内存使用率过高: {}%", String.format("%.2f", usagePercentage));
            // 触发内存分析或报警
            analyzeMemoryUsage();
        }
    }
    
    private void analyzeMemoryUsage() {
        // 生成堆转储或执行内存分析
        try {
            String timestamp = LocalDateTime.now().format(DateTimeFormatter.ISO_LOCAL_DATE_TIME);
            String dumpFile = "heapdump-" + timestamp + ".hprof";
            HotSpotDiagnosticMXBean diagnosticMXBean = ManagementFactory
                .getPlatformMXBean(HotSpotDiagnosticMXBean.class);
            diagnosticMXBean.dumpHeap(dumpFile, true);
            log.info("堆转储已生成: {}", dumpFile);
        } catch (IOException e) {
            log.error("生成堆转储失败", e);
        }
    }
    
    @PreDestroy
    public void cleanup() {
        scheduler.shutdown();
        memoryMap.clear();
    }
}

7.2 数据库连接池优化

HikariCP优化配置:


spring:
  datasource:
    hikari:
      pool-name: MainPool
      maximum-pool-size: 20
      minimum-idle: 5
      idle-timeout: 30000
      connection-timeout: 20000
      max-lifetime: 1800000
      leak-detection-threshold: 5000
      connection-test-query: SELECT 1

连接池监控:


@Component
@Slf4j
public class ConnectionPoolMonitor {
    
    private final HikariDataSource dataSource;
    private final MeterRegistry meterRegistry;
    
    public ConnectionPoolMonitor(HikariDataSource dataSource, MeterRegistry meterRegistry) {
        this.dataSource = dataSource;
        this.meterRegistry = meterRegistry;
    }
    
    @Scheduled(fixedRate = 30000)
    public void monitorConnectionPool() {
        HikariPoolMXBean poolMXBean = dataSource.getHikariPoolMXBean();
        
        Gauge.builder("db.pool.active.connections", poolMXBean, HikariPoolMXBean::getActiveConnections)
                .register(meterRegistry);
        Gauge.builder("db.pool.idle.connections", poolMXBean, HikariPoolMXBean::getIdleConnections)
                .register(meterRegistry);
        Gauge.builder("db.pool.total.connections", poolMXBean, HikariPoolMXBean::getTotalConnections)
                .register(meterRegistry);
        Gauge.builder("db.pool.threads.awaiting", poolMXBean, HikariPoolMXBean::getThreadsAwaitingConnection)
                .register(meterRegistry);
        
        if (poolMXBean.getThreadsAwaitingConnection() > 10) {
            log.warn("数据库连接池压力过大,等待线程: {}", poolMXBean.getThreadsAwaitingConnection());
        }
    }
}

8. 总结:性能优化最佳实践

8.1 性能优化生命周期


8.2 优化策略总结

  1. 监控先行:没有监控就没有优化,建立完善的监控体系
  2. 数据驱动:基于实际数据做出优化决策,避免盲目优化
  3. 分层优化:从架构、代码、数据库、JVM等多个层面系统优化
  4. 迭代改进:性能优化是一个持续的过程,不是一次性的任务
  5. 平衡取舍:在性能、可维护性、开发成本之间找到平衡点

8.3 持续性能文化

记住:性能优化不是项目最后阶段的补救措施,而应该是贯穿整个开发周期的持续实践。建立性能文化,让每个开发者都成为性能专家:

编写性能友好的代码

定期进行性能评审

建立性能基准和SLA

自动化性能测试

持续监控和优化

通过系统性地应用Spring性能监控和优化技术,你将能够构建出高性能、高可用的企业级应用,为用户提供卓越的使用体验。

相关文章
|
1月前
|
人工智能 Java Nacos
基于 Spring AI Alibaba + Nacos 的分布式 Multi-Agent 构建指南
本文将针对 Spring AI Alibaba + Nacos 的分布式多智能体构建方案展开介绍,同时结合 Demo 说明快速开发方法与实际效果。
1657 57
|
3月前
|
JSON 人工智能 Java
基于Spring AI构建智能Text-to-SQL转换器:一个完整的MCP
Spring AI 更新结构化输出转换器,弃用旧版 Parser 类,引入与 Spring 框架对齐的 Converter 体系,提升命名规范与功能兼容性。新版本支持 JSON、XML 及 Java 对象转换,确保 LLM 输出结构化,便于下游应用处理。
|
3月前
|
监控 Java API
Spring Boot 3.2 结合 Spring Cloud 微服务架构实操指南 现代分布式应用系统构建实战教程
Spring Boot 3.2 + Spring Cloud 2023.0 微服务架构实践摘要 本文基于Spring Boot 3.2.5和Spring Cloud 2023.0.1最新稳定版本,演示现代微服务架构的构建过程。主要内容包括: 技术栈选择:采用Spring Cloud Netflix Eureka 4.1.0作为服务注册中心,Resilience4j 2.1.0替代Hystrix实现熔断机制,配合OpenFeign和Gateway等组件。 核心实操步骤: 搭建Eureka注册中心服务 构建商品
698 3
|
2月前
|
人工智能 Java API
构建基于Java的AI智能体:使用LangChain4j与Spring AI实现RAG应用
当大模型需要处理私有、实时的数据时,检索增强生成(RAG)技术成为了核心解决方案。本文深入探讨如何在Java生态中构建具备RAG能力的AI智能体。我们将介绍新兴的Spring AI项目与成熟的LangChain4j框架,详细演示如何从零开始构建一个能够查询私有知识库的智能问答系统。内容涵盖文档加载与分块、向量数据库集成、语义检索以及与大模型的最终合成,并提供完整的代码实现,为Java开发者开启构建复杂AI智能体的大门。
1438 58
|
1月前
|
负载均衡 Java API
《深入理解Spring》Spring Cloud 构建分布式系统的微服务全家桶
Spring Cloud为微服务架构提供一站式解决方案,涵盖服务注册、配置管理、负载均衡、熔断限流等核心功能,助力开发者构建高可用、易扩展的分布式系统,并持续向云原生演进。
|
1月前
|
消息中间件 缓存 Java
Spring框架优化:提高Java应用的性能与适应性
以上方法均旨在综合考虑Java Spring 应该程序设计原则, 数据库交互, 编码实践和系统架构布局等多角度因素, 旨在达到高效稳定运转目标同时也易于未来扩展.
126 8
|
2月前
|
缓存 Java 应用服务中间件
Spring Boot配置优化:Tomcat+数据库+缓存+日志,全场景教程
本文详解Spring Boot十大核心配置优化技巧,涵盖Tomcat连接池、数据库连接池、Jackson时区、日志管理、缓存策略、异步线程池等关键配置,结合代码示例与通俗解释,助你轻松掌握高并发场景下的性能调优方法,适用于实际项目落地。
543 5
|
2月前
|
XML Java 测试技术
使用 Spring 的 @Import 和 @ImportResource 注解构建模块化应用程序
本文介绍了Spring框架中的两个重要注解`@Import`和`@ImportResource`,它们在模块化开发中起着关键作用。文章详细分析了这两个注解的功能、使用场景及最佳实践,帮助开发者构建更清晰、可维护和可扩展的Java应用程序。
222 0

热门文章

最新文章