塔帕若斯国家森林 67 公里塔站 LBA-ECO CD-10 CO2 和 H2O 涡流通量数据

简介: 该数据集记录了2002年1月至2006年1月间,巴西中北部塔帕若斯国家森林(Tapajos National Forest)67公里处原始森林塔点的二氧化碳和水交换涡流通量及气象测量值。数据通过闭路气体分析仪和声波风速计在58米和47米高度采集,包含CO2浓度、水汽通量、风速、温度、辐射等参数,以1小时为间隔平均计算。此外还提供了同地冠层内CO2与水分布及瞬时储量测量结果,支持生态与气候研究。

​LBA-ECO CD-10 CO2 and H2O Eddy Flux Data at km 67 Tower Site, Tapajos National Forest

简介

该数据集包含一个文本文件,报告了帕拉西部(圣塔伦)地区 67 公里处原始森林塔点的二氧化碳和水交换涡流通量测量值以及相关气象测量值。该地点位于巴西中北部的塔帕若斯国家森林内。测量时间跨度为 2002 年 1 月至 2006 年 1 月。

使用塔式闭路 Licor 6262 气体分析仪和 Campbell CSAT3 声波风速计,在两个高度(58 米和 47 米 )测量了二氧化碳和水的涡旋通量(图 1)。涡旋通量测量的采样率为 8 赫兹,并以 1 小时为间隔进行平均。此外,还测量了一系列气象参数(气温、气压、光合有效辐射、净辐射、降水等)。

同地测量包括第三台 Licor 气体分析仪,用于测量 (a) 冠层内及上方 8 个高度的二氧化碳和水浓度分布(每 2 分钟测量 1 个高度);以及 (b) 冠层二氧化碳和水的瞬时总储量, 测量时采用的设计是同时从所有 8 个进气口吸入空气(每 20 分钟一次)。参见相关数据集。

摘要

The flux and meteorological data are reported in one comma separated ASCII text file, km67_eddyflux_2002_2006.txt .

Data File Documentation:

column variable description
1 "hours" Hour of measurement (GMT, continuous from 1/1/00)

2 "JDstart.GMT" Decimal day (GMT, continuous from 1/1/00)
NOTE 1: Tapajos Forest Local time (LT) = GMT - 4 hours
NOTE 2: these times are time at the BEGINNING of the hour-long
data aggregation interval, i.e., data at 12:00 are from
aggregating measurements between 12:00 and 13:00

3 "ws" Sonic wind speed, rotated u (m/sec, @ 57.8 m)

4 "wdir" Wind direction (degrees (0 - 360 degrees))

5 "Tamb" Ambient temp at 58m (level 1 eddy) from chilled mirror sensor (deg C)

6 "Tdew" Ambient dew point temperature @ 58m (deg C)

7 "Tson" Sonic temp (deg C, unadjusted for moisture @ 57.8m)

8 "Tasp" Distance weighted aspirated ambient temperature from thermistors (deg C)

9 "fheat" Heat flux (deg C m/sec)

10 "fmom" Momentum flux (m2/sec2)

11 "co2" CO2 concentration (mmol/mol)

12 "fco2" Eddy flux of CO2, (umol/m2/sec) [relative to dry air]

13 "h2o.mmol.m" H2O concentration (mmol/mol)

14 "fh2o" Eddy flux of H2O (mmol/m2/sec) [relative to dry air]

15 "h2o.mix" Mixing ratio (g H2O/kg (dry) air)

16 "Pamb.Pa" Ambient pressure (Pascals)

17 "H" Sensible heat flux (W/m2)

18 "LHdry" Latent heat flux (W/m2) [relative to dry air]

19 "ustar" Friction velocity, sqrt(-) (m/sec),
where w,u are the rotated wind components

20 "ppm2umol" Density conversion factor for fluxes (mol/m3) [relative to dry air]

21 "compiler" Which fortran compiler was used in processing [IDs ed1 vs. ed2]

22 "NetRad" Net Radiation @ 64.1 m (W/m2, corrected)

23 "sNetRad" Std deviation on hourly mean of NetRad

24 "par" PAR (umol/m2/sec) level 1 (63.6 m)

25 "sPAR1up" Std deviation on hourly mean of par

26 "PAR2up" PAR (umol/m2/sec) level 2 (15.09 m)

27 "sPAR2up" Std deviation on hourly mean of PAR2up

28 "PAR1dn" Downward PAR (umol/m2/sec) level 1 (63.6 m)

29 "sPAR1dn" Std deviation on hourly mean of PAR1dn

30 "Tair1" Temp (via thermistor) at profile level 1 (61.94 m) (deg C)

31 "Tair2" Temp (via thermistor) at profile level 2 (49.75 m) (deg C)

32 "WS1" Wind speed, Cup anemometer #1 (m/sec, 64.1 m)

33 "sWS1" Std deviation on hourly mean of WS1

34 "rain" Precipitation (mm in each hour) (tipping bucket @ 42.6m)

35 "co2col.wt" Mean column CO2 concentration (ppm)

36 "storage.wt" Storage flux (umol/m2/sec) below this level = d/dt (CO2 column avg)
based on a discrete integral approach using the profile concentration
measurements

37 "nee.wt" NEE (umol/m2/sec) = fco2 + storage.wt

38 "T.filled" Filled temperature for level 1 (filled Tasp). Filled based on adjusted
temperature measurements from the Jamaraqua met. station
(-2.80639, -55.03639). Data courtesy of D. Fitzjarrald (SUNY Albany)

39 "GMT" GMT time of day

40 "yr" Year

41 "NEE" Integrated NEE (umol/m2/sec) [filtered and integrated across gaps],
see status for filling information [u*>0.22]

42 "R" Respiration based on nighttime NEE with u*>0.22 m/s (umol/m2/sec)
see status for filling information

43 "GEE" Gross Ecosystem Exchange (umol/m2/sec)
see status for filling information

44 "R.light" Respiration based on light-curve interpolation to 0 PAR (umol/m2/sec)

45 "stg.filled" Filled storage (umol/m2/sec). This storage estimate has also been balanced
to 0 on 5 day intervals.

46 "par.filled" Filled PAR timeseries (umol/m2/sec) see par.status for filling codes

47 "par.status" Status 0 = unfilled data, measured with Wofsy sensor
Status 1 = filled based on relation between Wofsy PAR sensor & Wofsy NetRad
sensor over 10 day intervals
Status 2 = filled based on relation between D. Fitzjarrald PAR sensor &
Wofsy NetRad sensor over 10 day intervals
Status 3 = filled based on lookup table for a composite year, based on
entire time series.

48 "NetRad.filled" Filled NetRad timeseries (W/m2), see NetRad.status for filling codes

49 "NetRad.status" Status 0 = unfilled data, measured with Wofsy sensor
Status 1 = filled based on relation between Wofsy PAR sensor & Wofsy NetRad
sensor over 10 day intervals
Status 2 = filled based on relation between D. Fitzjarrald PAR sensor &
Wofsy NetRad sensor over 10 day intervals
Status 3 = filled based on lookup table for a composite year, based on
entire time series.

50 "hr.2" Hour of the day (GMT)

51 "Status" 6-bit status word to describe what, if any, filling technique was used
on the NEE, R, and GEE data

bit value description
0 1 u < 0.22 or u = NA; NEE = R + GEE
1 2 no PAR; PAR filled from lookup table for GEE calculation
2 4 no Tair available; filled in from Jamaraqua for R calculation
3 8 No measured NEE available; filled in with R+GEE
4 16 R calculated, not measured (daytime & calm nights)
5 32 Storage gap of >= 5 days; filled w/mean storage value

 Missing value code is "NA"
 Values are comma separated

Sample Data Records:

All of the flux and meteorological data are reported in km67_eddyflux_2002_2006.txt.

hours,JDstart.GMT.,ws,wdir,Tamb,Tdew,Tson,Tasp,fheat,fmom,co2,fco2,h2o.mmol.m.,fh2o,
h2o.mix,Pamb.Pa,H, LHdry,ustar,ppm2umol,compiler,NetRad,sNetRad,par,sPAR1up,PAR2up,sPAR2up,PAR1dn,
sPAR1dn,Tair1,Tair2, WS1,sWS1,rain,co2col.wt,storage.wt,nee.wt,T.filled,GMT,yr,NEE,R,
GEE, R.light,stg.filled,par.filled,par.status,NetRad.filled,NetRad.status,hr.2,Status

17610,733.75,1.95,179.804,29.183,23.13,32.475,29.079,0.043,-0.227,394.86,NA,30.834,4.402,
19.188,97867.5,47.953, 192.815,0.43,37.743,11,NA,0.128,541.576,36.264,138.926,13.245,24.118,
1.604,29.161,28.92, 2.799,0.94,0,373.085,0.539,NA,29.079,2.75,2002,-7.251,9.231,
-16.482, NA,0.437,541.576,0,239.15,3,18,24

17611,733.792,2.226,274.378,27.888,24.574,31.531,27.906,0.052,-0.197,377.74,-6.896,32.106,1.562,
19.98,97929.8,57.2, 68.492,0.41,37.805,11,NA,0.244,570.412,68.772,102.103,14.096,24.946,
2.716,27.978,27.768, 2.138,0.772,0,373.88,0.587,-6.309,27.906,2.792,2002,-6.411,9.231,
-15.642, NA,0.485,570.412,0,190.283,3,19,16

17612,733.833,1.856,275.332,28.21,24.312,31.909,28.337,0.022,-0.114,376.175,-3.952,31.252,1.011,
19.449,97965.3,24.009, 44.332,0.337,37.804,11,NA,0.13,337.28,38.094,67.313,6.905,15.59,
1.868,28.402,28.212, 1.746,0.684,0,374.584,0.518,-3.434,28.337,2.833,2002,-3.536,9.231,
-12.767, NA,0.416,337.28,0,59.45,3,20,16

...

**Line Breaks Added to Improve Readability

Site boundaries: (All latitude and longitude given in degrees and fractions)

Site (Region) Westernmost Longitude Easternmost Longitude Northernmost Latitude Southernmost Latitude Geodetic Datum
Para Western (Santarem) - km 67 Primary Forest Tower Site (Para Western (Santarem)) -54.959 -54.959 -2.857 -2.857 World Geodetic System, 1984 (WGS-84)

代码
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify

import pandas as pd
import leafmap

url = "https://github.com/opengeos/NASA-Earth-Data"
df = pd.read_csv(url, sep="\t")
df

leafmap.nasa_data_login()

results, gdf = leafmap.nasa_data_search(
short_name="CD10_EddyFlux_Tapajos_860",
cloud_hosted=True,
bounding_box=(-55.21, -4.05, -54.91, -2.84),
temporal=("2002-01-01", "2006-01-18"),
count=-1, # use -1 to return all datasets
return_gdf=True,
)

gdf.explore()

leafmap.nasa_data_download(results[:5], out_dir="data")

相关文章
HH
|
物联网
阿里云物联网平台基于MQTT.fx完成OTA升级
物联网平台提供OTA升级与管理服务。下面介绍OTA升级消息的Topic和Alink数据格式,包括设备上报OTA模块版本、物联网平台推送升级包信息、设备上报升级进度和设备请求获取最新升级包信息。
HH
4466 0
阿里云物联网平台基于MQTT.fx完成OTA升级
|
2月前
|
机器学习/深度学习 算法 搜索推荐
从零开始构建图注意力网络:GAT算法原理与数值实现详解
本文详细解析了图注意力网络(GAT)的算法原理和实现过程。GAT通过引入注意力机制解决了图卷积网络(GCN)中所有邻居节点贡献相等的局限性,让模型能够自动学习不同邻居的重要性权重。
459 0
从零开始构建图注意力网络:GAT算法原理与数值实现详解
|
7月前
|
数据采集 分布式计算 监控
智能数据建设与治理 Dataphin:阿里云的一站式数据治理利器
阿里云Dataphin是一款企业级数据治理与智能建设平台,专注于解决数据孤岛、质量低下和开发效率低等问题。它提供从数据集成、规范建模、智能开发到质量监控及资产管理的全生命周期解决方案,特别适用于中大型企业构建数据中台或推进数字化转型。Dataphin通过自动化生成代码、内置质量规则模板和全局血缘追踪等功能,显著提升数据开发效率与跨团队协作能力。尽管学习曲线较陡峭且资源消耗较高,但其深度集成阿里云生态的优势,使其成为追求规范化数据治理企业的理想选择。推荐已采用阿里云技术栈并具备一定数据团队规模的企业使用。
471 1
|
8月前
|
运维 网络安全 文件存储
找不到类似 Docker Desktop 的 Web 管理界面?试试这些开源方案
Docker Desktop 是本地容器化开发的利器,但存在无法通过 Web 远程管理、跨平台体验不一致等问题。为此,推荐几款轻量级、可 Web 化管理的 Docker 工具:Portainer 功能全面,适合企业级运维;CasaOS 集成应用商店和 NAS 功能,适合家庭/个人开发环境;Websoft9 提供预集成环境,新手友好。这些工具能有效提升容器管理效率,满足不同场景需求。
456 3
|
机器学习/深度学习 人工智能 算法
Scaling Law触礁数据墙?Epoch AI发文预测LLM到2028年耗尽所有文本数据
【6月更文挑战第23天】Epoch AI警告,大语言模型(LLM)可能在2026-2032年间面临“数据墙”,因人类生成文本数据耗尽。论文探讨LLM扩展限制,提出合成数据、迁移学习和提高数据效率作为应对策略,但也引发数据隐私和伦理问题。研究敦促平衡模型发展与数据资源管理[[1](https://arxiv.org/abs/2211.04325)]。
344 6
|
缓存 前端开发 JavaScript
高级前端常见的面试题?
【7月更文挑战第11天】 **高级前端面试聚焦候选人的技术深度、项目实战、问题解决及技术趋势洞察。涉及React/Vue生命周期、Redux/Vuex状态管理、Webpack优化、HTTP/HTTPS安全、性能提升策略、PWA、GraphQL、WebAssembly、安全性议题及项目管理。通过回答,展现候选人技术广度与应对复杂场景的能力。**
632 1
|
算法 Serverless Python
用流程图表示算法
在算法设计和实现的过程中,流程图是一种非常有用的工具,它可以帮助我们清晰地展现算法的逻辑和步骤。通过流程图,我们可以更直观地理解算法的执行过程,发现潜在的问题,并进行优化。本文将介绍如何使用流程图表示算法,并附上一个示例代码及其对应的流程图。
1242 0
阿里云网站备案审核时间主要取决于两个环节
阿里云网站备案审核时间主要取决于两个环节
719 1
|
机器学习/深度学习 人工智能 自然语言处理
【AI 现况分析】AI 在后端开发领域的应用
【1月更文挑战第26天】【AI 现况分析】AI 在后端开发领域的应用
|
Linux 数据安全/隐私保护 Windows
AES在windows下正常加解密,Linux下加密正常,解密异常(javax.crypto.BadPaddingException: pad block co
AES在windows下正常加解密,Linux下加密正常,解密异常(javax.crypto.BadPaddingException: pad block co
460 1