30天拿下Python之pandas模块

简介: 30天拿下Python之pandas模块

概述

在上一节,我们介绍了Python的numpy模块,包括:多维数组、数组索引、数组操作、数学函数、线性代数、随机数生成等内容。在这一节,我们将介绍Python的pandas模块。pandas模块是Python编程语言中用于数据处理和分析的强大模块,它提供了许多用于数据操作和清洗的函数,使得数据处理和分析变得更为简单和直观。

在Python中使用pandas模块,需要先安装pandas库。可以通过pip命令进行安装:pip install -i  https://pypi.tuna.tsinghua.edu.cn/simple pandas。安装完成后,就可以在Python脚本中导入pandas模块,并使用其函数和方法了。

Series

Series是一个一维数组,它不仅包含数据,还包含索引。Series可以被看作是一个字典,其中的索引是键,值是数据。每个索引只有一个对应的值,因此Series可以被看作是具有标签化的数值数据。

import pandas as pd
# 创建一个Series
s = pd.Series([1, 2, 3, 4, 5])
# 输出:
# 0    1
# 1    2
# 2    3
# 3    4
# 4    5
# dtype: int64
print(s)


上面的示例代码创建了一个包含五个整数的Series,默认情况下,它的索引是从0开始的整数。

当然,我们也可以提供一个列表作为Series的索引和值。

import pandas as pd
# 创建一个带有自定义索引和值的Series
index = ['C', 'S', 'D', 'N', 'P']
s = pd.Series([1, 2, 3, 4, 5], index = index)
# 输出:
# C    1
# S    2
# D    3
# N    4
# P    5
# dtype: int64
print(s)


我们还可以直接使用字典创建带有自定义数据标签的数据,pandas会自动把字典的键作为数据标签,字典的值作为相对应的数据。

import pandas as pd
# 创建一个带有自定义索引和值的Series
s = pd.Series({'C': 1, 'S': 2, 'D': 3, 'N': 4, 'P': 5})
# 输出:
# C    1
# S    2
# D    3
# N    4
# P    5
# dtype: int64
print(s)


如果想访问Series里的数据,也非常简单,直接使用中括号加数据标签的方式即可。

import pandas as pd
s = pd.Series([1, 2, 3, 4, 5])
# 访问第二个元素,输出:3
print(s[2])
s = pd.Series({'C': 1, 'S': 2, 'D': 3, 'N': 4, 'P': 5})
# 访问Key值为'D'的元素,输出:3
print(s['D'])


使用Series,结合pandas强大的数据对齐功能,可以让我们快速对数据进行分析和处理。

import pandas as pd
s1 = pd.Series({'Red': 1, 'Blue': 2, 'Green': 3})
s2 = pd.Series({'Red': 100, 'Blue': 200, 'Green': 300})
s = s1 + s2
# 将两个Series进行相加,输出:
# Red      101
# Blue     202
# Green    303
# dtype: int64
print(s)
s1 = pd.Series({'Red': 1, 'Blue': 2, 'Green': 3, 'White': 4})
s2 = pd.Series({'Red': 100, 'Blue': 200, 'Green': 300})
s = s1 + s2
# 数据标签不相同的数据,运算后结果是NaN,输出:
# Blue     202.0
# Green    303.0
# Red      101.0
# White      NaN
# dtype: float64
print(s)
# 数据标签不相同的数据,调用add函数,可以设置默认填充值,输出:
# Blue     202.0
# Green    303.0
# Red      101.0
# White      4.0
# dtype: float64
s = s1.add(s2, fill_value = 0)
print(s)

DataFrame

DataFrame是一个二维的表格型数据结构,类似于Excel或数据库中的表。DataFrame中的数据可以是不同的数据类型,比如:整数、浮点数、字符串、布尔值等。

import pandas as pd
# 创建DataFrame
data = {'Name': ['Jack', 'Tank', 'John'], 'Age': [20, 21, 19]}
df = pd.DataFrame(data)
# 输出:
#    Name  Age
# 0  Jack   20
# 1  Tank   21
# 2  John   19
print(df)


使用DataFrame,我们可以很方便地对表中的行、列进行增删改查等操作。使用df['column_name']可以查看指定列的数据;使用df.iloc[row_number]可以查看指定行的数据;使用df.loc[row_label]可以基于标签访问指定行的数据;使用df[condition]可以筛选出满足条件的数据:使用df['new_column'] = values可以添加一个新列;使用del df['column_name']可以删除一列。

import pandas as pd
# 创建DataFrame
data = {'Name': ['Jack', 'Tank', 'John'], 'Age': [20, 21, 19]}
df = pd.DataFrame(data)
# 输出:
#    Name  Age
# 0  Jack   20
# 1  Tank   21
# 2  John   19
print(df)
df = pd.DataFrame(data, index = ['First', 'Second', 'Third'])
# 指定自定义索引,输出:
#         Name  Age
# First   Jack   20
# Second  Tank   21
# Third   John   19
print(df)
# 访问列数据,输出:
# First     Jack
# Second    Tank
# Third     John
# Name: Name, dtype: object
print(df['Name'])
# 根据行索引访问行数据,输出:
# Name    John
# Age       19
# Name: Third, dtype: object
print(df.iloc[2])
# 根据行标签访问行数据,输出:
# Name    John
# Age       19
# Name: Third, dtype: object
print(df.loc['Third'])
df['Age'] = [22, 18, 20]
# 修改列数据,输出:
#         Name  Age
# First   Jack   22
# Second  Tank   18
# Third   John   20
print(df)
df['Gender'] = ['M', 'F', 'F']
# 新增列数据,输出:
#         Name  Age Gender
# First   Jack   22      M
# Second  Tank   18      F
# Third   John   20      F
print(df)
del df['Gender']
# 删除列数据,输出:
#         Name  Age
# First   Jack   22
# Second  Tank   18
# Third   John   20
print(df)
# 筛选出年龄大于20的数据,输出:
#        Name  Age
# First  Jack   22
print(df[df['Age'] > 20])

数据读取和写入

使用pandas,可以方便地读取和写入各种数据格式,比如:CSV、Excel、SQL数据库等。我们以CSV文件的读写为例,来理解CSV表格数据的读取和写入。

import pandas as pd
# 创建DataFrame
data = {'Name': ['Jack', 'Tank', 'John'], 'Age': [20, 21, 19]}
df = pd.DataFrame(data)
# 将DataFrame写入CSV文件
df.to_csv('output.csv', index = False)


在上面的示例代码中,我们首先创建了一个名为df的DataFrame,然后使用to_csv函数将其写入一个名为output.csv的CSV文件中。我们将index参数设置为False,以避免将DataFrame的索引写入CSV文件。

to_csv函数还有其他一些可选参数,包括:

sep:用于指定CSV文件中的分隔符,默认是逗号。

header:用于指定是否将DataFrame的列名写入CSV文件中,默认为True。

encoding:用于指定文件的编码格式,默认为UTF-8。

compression:用于指定文件的压缩格式,默认为None。

在下面的示例代码中,我们读取了上面保存的名为output.csv的CSV文件,并将其转化为一个pandas DataFrame。

import pandas as pd
# 从CSV文件读取  
df = pd.read_csv('output.csv')
# 输出:
#    Name  Age
# 0  Jack   20
# 1  Tank   21
# 2  John   19
print(df)


read_csv函数还有其他一些可选参数,包括:

sep:指定分隔符,默认为逗号。

header:指定行号作为列名,默认为0。

index_col:将一列或多列设为DataFrame的索引。

usecols:返回的列的子集,可以是一个列表或函数。

dtype:为每一列设置数据类型。

skiprows:跳过指定的行数或行号。

na_values:用于识别空值的字符串或字符串列表。

keep_default_na:是否保留默认的识别空值的字符串。


相关文章
|
22天前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
206 7
|
1月前
|
监控 安全 程序员
Python日志模块配置:从print到logging的优雅升级指南
从 `print` 到 `logging` 是 Python 开发的必经之路。`print` 调试简单却难维护,日志混乱、无法分级、缺乏上下文;而 `logging` 支持级别控制、多输出、结构化记录,助力项目可维护性升级。本文详解痛点、优势、迁移方案与最佳实践,助你构建专业日志系统,让程序“有记忆”。
194 0
|
1月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
191 0
|
1月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
300 0
|
27天前
|
JSON 算法 API
Python中的json模块:从基础到进阶的实用指南
本文深入解析Python内置json模块的使用,涵盖序列化与反序列化核心函数、参数配置、中文处理、自定义对象转换及异常处理,并介绍性能优化与第三方库扩展,助你高效实现JSON数据交互。(238字)
229 4
|
23天前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
187 0
|
24天前
|
XML JSON 数据处理
超越JSON:Python结构化数据处理模块全解析
本文深入解析Python中12个核心数据处理模块,涵盖csv、pandas、pickle、shelve、struct、configparser、xml、numpy、array、sqlite3和msgpack,覆盖表格处理、序列化、配置管理、科学计算等六大场景,结合真实案例与决策树,助你高效应对各类数据挑战。(238字)
127 0
|
2月前
|
安全 大数据 程序员
Python operator模块的methodcaller:一行代码搞定对象方法调用的黑科技
`operator.methodcaller`是Python中处理对象方法调用的高效工具,替代冗长Lambda,提升代码可读性与性能。适用于数据过滤、排序、转换等场景,支持参数传递与链式调用,是函数式编程的隐藏利器。
108 4
|
2月前
|
存储 数据库 开发者
Python SQLite模块:轻量级数据库的实战指南
本文深入讲解Python内置sqlite3模块的实战应用,涵盖数据库连接、CRUD操作、事务管理、性能优化及高级特性,结合完整案例,助你快速掌握SQLite在小型项目中的高效使用,是Python开发者必备的轻量级数据库指南。
238 0
|
3月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
305 0

推荐镜像

更多