世界模型又近了?MIT惊人研究:LLM已模拟现实世界,绝非随机鹦鹉!

简介: 【9月更文挑战第14天】麻省理工学院最近的研究揭示了大型语言模型(LLM)展现出的新潜能,其不仅能模仿真实环境,更在一定程度上理解并模拟程序在特定环境下的运作。通过使用Transformer模型并结合特定探测分类器,研究团队发现模型能逐步掌握程序的形式语义。为了验证这一发现,团队创建了一个独特的干预基准测试,进一步证实了模型的仿真能力,为世界模型的发展提供了新方向。尽管存在模型可能仅习得统计规律而非真正理解语义的争议,这项研究依然为理解复杂系统提供了新工具与视角。论文详情见:https://arxiv.org/abs/2305.11169。

最近,麻省理工学院的一项惊人研究表明,大型语言模型(LLM)已经能够模拟现实世界,而不仅仅是随机鹦鹉学舌。这项研究为世界模型的发展带来了新的希望,同时也引发了一些争议和讨论。

在这项研究中,研究人员使用了一种名为Transformer的模型,该模型在训练过程中仅被要求进行下一个词的预测。然而,当研究人员使用一种特定的探测分类器来分析模型的隐藏状态时,他们惊讶地发现,模型能够逐渐学习到程序的正式语义,并能够模拟程序在2D网格世界中的运行过程。

具体来说,研究人员在模型的训练数据中包含了一些程序,这些程序使用一种特定领域的语言来导航2D网格世界。每个程序都伴随着一些输入和输出的网格世界状态。尽管研究人员没有提供额外的归纳偏置,但模型仍然能够从隐藏状态中提取出越来越准确的中间网格世界状态,这表明模型已经具备了解释程序的正式语义的能力。

为了进一步验证这一发现,研究人员还开发了一种新颖的干预性基线,以区分模型所表示的内容和探测分类器所学习的内容。他们发现,这种干预性基线能够有效地区分模型的表示和探测分类器的学习,从而进一步证明了模型的模拟能力。

这项研究的意义在于,它为世界模型的发展提供了新的思路和方法。通过使用大型语言模型来模拟现实世界,我们可以更好地理解和解释复杂的系统和过程。然而,这项研究也引发了一些争议和讨论。

一些人认为,这项研究的结果可能只是模型的偶然行为,而不是真正的模拟能力。他们认为,模型可能只是在训练过程中学习到了一些统计规律,而不是真正的语义理解。此外,一些人还担心,这种模拟能力可能会被滥用,例如用于生成虚假信息或进行网络攻击。

然而,尽管存在这些争议和讨论,这项研究仍然为世界模型的发展带来了新的希望。通过进一步的研究和探索,我们可以更好地理解大型语言模型的模拟能力,并找到更好的方法来利用这种能力来解决实际问题。同时,我们也需要注意模型的潜在风险,并采取相应的措施来确保其安全和可靠。

论文地址:https://arxiv.org/abs/2305.11169

目录
相关文章
|
11天前
|
数据采集 自然语言处理 供应链
LLM安全新威胁:为什么几百个毒样本就能破坏整个模型
数据投毒通过在训练数据中植入恶意样本,将后门永久嵌入大模型,仅需数百份毒样本即可触发数据泄露、越狱等行为,防御需结合溯源、聚类分析与自动化检测。
100 2
LLM安全新威胁:为什么几百个毒样本就能破坏整个模型
|
15天前
|
缓存 物联网 PyTorch
使用TensorRT LLM构建和运行Qwen模型
本文档介绍如何在单GPU和单节点多GPU上使用TensorRT LLM构建和运行Qwen模型,涵盖模型转换、引擎构建、量化推理及LoRA微调等操作,并提供详细的代码示例与支持矩阵。
205 2
|
1月前
|
机器学习/深度学习 缓存 监控
139_剪枝优化:稀疏模型压缩 - 分析结构化剪枝的独特速度提升与LLM部署加速实践
随着大语言模型(LLM)规模的不断增长,模型参数量已从最初的数亿扩展到数千亿甚至万亿级别。这种规模的模型在推理过程中面临着巨大的计算和内存挑战,即使在最先进的硬件上也难以高效部署。剪枝优化作为一种有效的模型压缩技术,通过移除冗余或不重要的参数,在保持模型性能的同时显著减少计算资源需求。
|
1月前
|
机器学习/深度学习 缓存 PyTorch
131_推理加速:ONNX与TensorRT深度技术解析与LLM模型转换优化实践
在大语言模型(LLM)时代,高效的推理加速已成为部署高性能AI应用的关键挑战。随着模型规模的不断扩大(从BERT的数亿参数到GPT-4的数千亿参数),推理过程的计算成本和延迟问题日益突出。ONNX(开放神经网络交换格式)和TensorRT作为业界领先的推理优化框架,为LLM的高效部署提供了强大的技术支持。本文将深入探讨LLM推理加速的核心原理,详细讲解PyTorch模型转换为ONNX和TensorRT的完整流程,并结合2025年最新优化技术,提供可落地的代码实现与性能调优方案。
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
118_LLM模型量化与压缩:从理论到2025年实践技术详解
大型语言模型(LLM)在自然语言处理领域取得了前所未有的成功,但模型规模的快速增长带来了巨大的计算和存储挑战。一个典型的大型语言模型(如GPT-4或LLaMA 3)可能包含数千亿甚至万亿参数,需要数百GB甚至TB级的存储空间,并且在推理时需要大量的计算资源。这种规模使得这些模型难以在边缘设备、移动设备甚至资源有限的云服务器上部署和使用。
|
1月前
|
机器学习/深度学习 存储 缓存
115_LLM基础模型架构设计:从Transformer到稀疏注意力
大型语言模型(LLM)的架构设计是其性能的核心决定因素。从2017年Transformer架构的提出,到如今的稀疏注意力和混合专家模型,LLM架构经历了快速的演进。本文将全面探讨LLM基础架构的设计原理,深入分析Transformer的核心机制,详细介绍稀疏注意力、MoE等创新架构,并展望未来架构发展方向。通过数学推导和实践案例,为构建高效、强大的LLM提供全面指导。
|
1月前
|
机器学习/深度学习 人工智能 算法
62_模型融合:ensemble LLM技巧
在2025年的AI生态中,大语言模型(LLM)已成为技术创新的核心引擎,但单一模型在面对复杂任务时往往表现出局限性。不同模型由于训练数据、架构设计和优化目标的差异,在各领域展现出独特优势:模型A可能擅长逻辑推理,模型B在创意写作上更出色,而模型C则在事实性问答中准确率更高。
|
1月前
|
缓存 人工智能 并行计算
59_实时性模型:选择低延迟LLM
在当今快速发展的人工智能领域,大型语言模型(LLM)的应用正迅速渗透到各个行业。随着企业对AI响应速度的要求不断提高,低延迟LLM的选择与优化已成为技术团队面临的关键挑战。实时聊天机器人、智能客服、自动驾驶辅助系统等场景对响应时间提出了极高的要求,毫秒级的延迟差异可能直接影响用户体验和业务效率。2025年,随着推理优化技术的突破性进展,低延迟LLM已不再是难以企及的目标,而是成为实际生产环境中的标准配置。
|
1月前
|
机器学习/深度学习 自然语言处理 算法
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。
|
1月前
|
存储 机器学习/深度学习 人工智能
46_LLM幻觉问题:来源与早期研究_深度解析
大型语言模型(LLM)在自然语言处理领域展现出了令人惊叹的能力,能够生成连贯的文本、回答复杂问题、进行创意写作,甚至在某些专业领域提供见解。然而,这些强大模型的一个根本性缺陷——幻觉问题,正成为限制其在关键应用中广泛部署的主要障碍。幻觉(Hallucination)指的是LLM生成的内容与事实不符、上下文矛盾、逻辑错误,或者完全虚构信息的现象。

热门文章

最新文章