AI计算机视觉笔记十四:YOLOV5环境搭建及测试全过程

简介: 本文详细记录了在Windows 10环境下从零开始搭建yolov5环境并进行测试的全过程,涵盖环境配置、依赖安装及模型测试等关键步骤。文章首先介绍了所需环境(Python 3.8、yolov5-5.0),接着详细说明了如何使用Miniconda3创建与激活虚拟环境,并通过具体命令演示了如何下载安装yolov5及相关依赖库。最后,通过一系列命令展示了如何下载预训练模型并对示例图像进行目标检测,同时解决了一些常见错误。适合初学者跟随实践。如需转载,请注明原文出处。

若该文为原创文章,转载请注明原文出处。

记录yolov5从环境搭建到测试全过程。

一、运行环境

1、系统:windows10 (无cpu)

2、yolov5版本:yolov5-5.0

3、python版本:py3.8

在创建虚拟环境前需要先把miniconda3和pytorch安装好。

二、虚拟环境搭建

1、打开Anaconda Powershell Prompt(miniconda3)终端,执行下面命令创建python虚拟环境

conda create -n your_env_name python=x.x
conda create -n yolov5_env python=3.8
创建名为yolov5_env,py3.8的虚拟环境,遇到需要输入时,输入y,会安装一些基本的包。
image.png
如果创建过程中出错或长时间等待,自行换轮子(源)

创建成功后会提示激活环境等,如下图。

image.png
按提示,激活环境

conda activate yolov5_env
激活后,环境就修改了
image.png

三、yolov5测试

1、下载5.0版本

Tags · ultralytics/yolov5 · GitHub

image.png
下载后,解压,然后从终端进入目录,比如解压后的文件放在桌面,使用命令cd进入:
image.png

目录下有个README.md已经写得很清楚了,可以参照上面的去操作。

2、安装Requirements
要求python3.8, torch>=1.7,在requirements.txt文件里有指定版本

执行下面命令安装即可,安装如果太慢,就使用国内的源

pip install -r requirements.txt
太慢使用下面指令安装,使用的是清华源

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
第一次安装可能会有点久,需要耐心等待

image.png
3、测试
测试前需要先下载使用的权重文件。

下载地址:

Release v5.0 - YOLOv5-P6 1280 models, AWS, Supervise.ly and YouTube integrations · ultralytics/yolov5 · GitHub

image.png
下载yolov5s.pt文件,也可以下载其他的,在yolov5-5.0目录下创建weights,把下载的yolov5s.pt放到weights目录下。

image.png

接下来使用下面命令测试

python detect.py --source data/images/zidane.jpg --weights weights/yolov5s.pt
执行后出错了attributeerror: 'upsample' object has no attribute 'recompute_scale_factor'这个错误,这个错误是PyTorch的版本问题,

降低PyTorch的版本到1.9.0,PyTorch的历史版本Previous PyTorch Versions | PyTorch

pytorch需要根据自己的电脑安装,我使用的是CPU,所以指令最后一条指令

# CUDA 10.2
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=10.2 -c pytorch

# CUDA 11.3
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=11.3 -c pytorch -c conda-forge

# CPU Only
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cpuonly -c pytorch

安装后在次执行,出现“ImportError: DLL load failed while importing _imaging: 找不到指定的模块”的错误

重装pillow:
pip uninstall pillow

pip install pillow

运行成功后,会把结果输出保存到runs/detect/expX中。
image.png
参数

--source:输入源

              0  # webcam
              file.jpg  # image 
             file.mp4  # video
             path/  # directory
             path/*.jpg  # glob
             'https://youtu.be/NUsoVlDFqZg'  # YouTube video
             'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

--weights:权重文件,可以是自己训练的,测试使用的是github提供的

参数还有很多,详细参考github上

如此,测试完成,接下来自己编写一个简单的测试程序,并训练自己的数据集。

相关文章
|
2月前
|
人工智能 自然语言处理 测试技术
从人工到AI驱动:天猫测试全流程自动化变革实践
天猫技术质量团队探索AI在测试全流程的落地应用,覆盖需求解析、用例生成、数据构造、执行验证等核心环节。通过AI+自然语言驱动,实现测试自动化、可溯化与可管理化,在用例生成、数据构造和执行校验中显著提效,推动测试体系从人工迈向AI全流程自动化,提升效率40%以上,用例覆盖超70%,并构建行业级知识资产沉淀平台。
从人工到AI驱动:天猫测试全流程自动化变革实践
|
2月前
|
数据采集 存储 人工智能
从0到1:天猫AI测试用例生成的实践与突破
本文系统阐述了天猫技术团队在AI赋能测试领域的深度实践与探索,讲述了智能测试用例生成的落地路径。
从0到1:天猫AI测试用例生成的实践与突破
|
3月前
|
人工智能 数据可视化 测试技术
AI测试平台自动遍历:低代码也能玩转全链路测试
AI测试平台的自动遍历功能,通过低代码配置实现Web和App的自动化测试。用户只需提供入口链接或安装包及简单配置,即可自动完成页面结构识别、操作验证,并生成可视化报告,大幅提升测试效率,特别适用于高频迭代项目。
|
3月前
|
人工智能 JavaScript 算法
Playwright携手MCP:AI智能体实现自主化UI回归测试
MCP 协议使得 AI 能够通过 Playwright 操作浏览器,其中快照生成技术将页面状态转化为 LLM 可理解的文本,成为驱动自动化测试的关键。该方式适用于探索性测试和快速验证,但目前仍面临快照信息缺失、元素定位不稳定、成本高、复杂场景适应性差以及结果确定性不足等挑战。人机协同被认为是未来更可行的方向,AI 负责执行固定流程,人类则专注策略与验证。
|
2月前
|
人工智能 自然语言处理 JavaScript
Playwright MCP在UI回归测试中的实战:构建AI自主测试智能体
Playwright MCP结合AI智能体,革新UI回归测试:通过自然语言驱动浏览器操作,降低脚本编写门槛,提升测试效率与覆盖范围。借助快照解析、智能定位与Jira等工具集成,实现从需求描述到自动化执行的闭环,推动测试迈向智能化、民主化新阶段。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
783 8
|
2月前
|
人工智能 自然语言处理 测试技术
让AI帮你跑用例-重复执行,不该成为测试工程师的主旋律
测试不该止步于重复执行。测吧科技推出用例自动执行智能体,通过AI理解自然语言用例,动态规划路径、自主操作工具、自动重试并生成报告,让测试工程师从“点点点”中解放,专注质量思考与创新,提升效率3倍以上,节约人力超50%,重构测试生产力。
|
3月前
|
人工智能 自然语言处理 前端开发
深度解析Playwright MCP:功能、优势与挑战,AI如何提升测试效率与覆盖率
Playwright MCP通过AI与浏览器交互,实现自然语言驱动的自动化测试。它降低门槛、提升效率,助力测试工程师聚焦高价值工作,是探索性测试与快速验证的新利器。
|
3月前
|
人工智能 数据可视化 测试技术
AI 时代 API 自动化测试实战:Postman 断言的核心技巧与实战应用
AI 时代 API 自动化测试实战:Postman 断言的核心技巧与实战应用
489 11