DataSphere Studio & Linkis 单机部署

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS MySQL,高可用系列 2核4GB
简介: DataSphere Studio & Linkis 单机部署

阅读目录

一、环境要求

参考文档:DataSphere Studio & Linkis 单机一键部署文档

相关软件包:百度网盘

1.系统要求

CentOS为6或者7

2.安装依赖命令

命令依赖:

telnet; tar; sed; dos2unix; mysql; yum; java; unzip; zip; expect


yum provides */telnet  #如果命令不存在通过此命令查看命令所属安装包安装即可,如telnet

3.JDK

tar xf jdk-8u201-linux-x64.tar.gz -C /usr/local/
cd /usr/local/
ln -sv jdk1.8.0_201/ java
vim /etc/profile.d/java.sh
export JAVA_HOME=/usr/local/java
export CLASSPATH=$JAVA_HOME/lib/tools.jar
export PATH=$JAVA_HOME/bin:$PATH
. /etc/profile.d/java.sh
java -version

4.调大用户文件描述符

vim /etc/security/limits.conf
* soft nofile 65536
* hard nofile 131072
* soft nproc 2048
* hard nproc 4096
* soft memlock unlimited
* hard memlock unlimited

5.本机免密登录

ssh-keygen -t rsa

ssh-copy-id -i 192.168.1.134

6.安装 python

#具体版本需要和spark版本兼容  其他版本下载地址https://repo.anaconda.com/archive/

wget https://repo.anaconda.com/archive/Anaconda2-4.2.0-Linux-x86_64.sh

chmod +x Anaconda2-4.2.0-Linux-x86_64.sh

./Anaconda2-4.2.0-Linux-x86_64.sh   #安装目录/appcom/Install/anaconda2/

7.主机名解析

192.168.1.134 datasphere-server

8.创建部署用户

useradd hadoop

visudo

hadoop  ALL=(ALL)  NOPASSWD: NOPASSWD: ALL

二、安装依赖服务

1.Nginx

yum install nginx -y       #应用会自动添加Nginx配置和重启Nginx,自定义Nginx目前未验证是否有问题
vim /etc/nginx/nginx.conf  #修改Nginx用户为部署用户,或者安装完成后把前端代码移动到nginx用户可以访问目录

systemctl start nginx

2.MySQL

参考:https://www.cnblogs.com/panwenbin-logs/p/11425652.html
确保tmpdir目录MySQL用户有写权限 show variables like '%tmpdir%';
创建 dss和hive库
create database dss default character set utf8mb4 COLLATE utf8mb4_general_ci;
CREATE USER 'dss'@'%' IDENTIFIED BY 'Qwer@123';
GRANT ALL PRIVILEGES ON dss.* TO 'dss'@'%';
create database hive default character set utf8mb4 COLLATE utf8mb4_general_ci;
CREATE USER 'hive'@'%' IDENTIFIED BY 'Qwer@123';
GRANT ALL PRIVILEGES ON hive.* TO 'hive'@'%';
FLUSH PRIVILEGES;
exit;

3.Hadoop

mkdir -p /mnt/datasphere
tar xf hadoop-2.7.2.tar.gz -C /mnt/datasphere
cd /mnt/datasphere
ln -sv hadoop-2.7.2/ hadoop
cd hadoop/etc/hadoop/
cp hadoop-env.sh hadoop-env.sh-bak
vim hadoop-env.sh
export HDFS_NAMENODE_USER=hadoop
export HDFS_DATANODE_USER=hadoop
export HDFS_SECONDARYNAMENODE_USER=hadoop
export YARN_RESOURCEMANAGER_USER=hadoop
export YARN_NODEMANAGER_USER=hadoop
export HADOOP_HOME=/mnt/datasphere/hadoop
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export JAVA_HOME=/usr/local/java
cp core-site.xml core-site.xml-bak
vim core-site.xml
<configuration>
   <!-- 指定HDFS老大(namenode)的通信地址 -->
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://192.168.1.134:9000</value>
    </property>
    <!-- 指定hadoop运行时产生文件的存储路径 -->
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/Hadoop/tmp</value>
    </property>
    <!-- 设置HDFS web UI访问用户 -->
    <property>
        <name>hadoop.http.staticuser.user</name>
        <value>hadoop</value>
    </property>
</configuration>
cp hdfs-site.xml hdfs-site.xml-bak
vim hdfs-site.xml
<configuration>
    <!-- 设置namenode的http通讯地址 -->
    <property>
       <name>dfs.namenode.http-address</name>
       <value>192.168.1.134:50070</value>
    </property>
     <!-- 设置namenode存放的路径 -->
    <property>
       <name>dfs.namenode.name.dir</name>
       <value>/Hadoop/name</value>
    </property>
    <!-- 设置datanode存放的路径 -->
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>/Hadoop/data</value>
    </property>
</configuration>
cp mapred-site.xml.template mapred-site.xml
vim mapred-site.xml
<configuration>
    <!-- 通知框架MR使用YARN -->
    <property>
       <name>mapreduce.framework.name</name>
       <value>yarn</value>
    </property>
</configuration>
vim yarn-site.xml
<configuration>
<!-- Site specific YARN configuration properties -->
<property>
    <name>yarn.resourcemanager.hostname</name>
    <value>192.168.1.134</value>
</property>
 
<property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
</property>
 
<!--检查每个任务正使用的物理内存量,如果任务超出分配值,则将其杀掉,默认是true -->
<property>
     <name>yarn.nodemanager.pmem-check-enabled</name>
     <value>false</value>
</property>
<!--检查每个任务正使用的虚拟内存量,如果任务超出分配值,则将其杀掉,默认是true -->
<property>
     <name>yarn.nodemanager.vmem-check-enabled</name>
     <value>false</value>
</property>
</configuration>
vim slaves
192.168.1.134
mkdir -pv /Hadoop/{data,name,tmp}
vim /etc/profile.d/hadoop.sh
export HADOOP_HOME=/mnt/datasphere/hadoop
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
chown hadoop:hadoop -R /Hadoop
chown hadoop:hadoop -R /mnt
su - hadoop
. /etc/profile.d/hadoop.sh
hdfs namenode -format
start-all.sh
jps
访问地址:192.168.1.134:8088,50070

4.hive

sudo vim /etc/profile.d/hive.sh
export HIVE_HOME=/mnt/datasphere/hive
export PATH=$JAVA_HOME/bin:$PATH:$HADOOP_HOME/bin:$HIVE_HOME/bin
. /etc/profile.d/hive.sh
tar xf apache-hive-2.3.3-bin.tar.gz -C /mnt/datasphere
cd /mnt/datasphere
ln -sv apache-hive-2.3.3-bin/ hive
cd hive/conf
cp hive-env.sh.template hive-env.sh
vim hive-env.sh
export JAVA_HOME=/usr/local/java
export HADOOP_HOME=/mnt/datasphere/hadoop
vim hive-site.xml
<configuration>
    <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <value>jdbc:mysql://192.168.1.134:3306/hive?useSSL=false</value>
    </property>
<property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>hive</value>         # mysql用户
    </property>
<property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>Qwer@123</value>    # mysql密码
    </property>
    <property>
        <name>datanucleus.schema.autoCreateAll</name>
        <value>true</value>
    </property>
</configuration>
mv mysql-connector-java-5.1.27-bin.jar /mnt/datasphere/hive/lib/
schematool -initSchema -dbType mysql
hive -e "show databases"

5.spark(on yarn)

#其他版本下载地址  http://archive.apache.org/dist/spark/
tar xf spark-2.4.3-bin-hadoop2.7.tgz -C /mnt/datasphere
cd /mnt/datasphere
ln -sv spark-2.4.3-bin-hadoop2.7/ spark
cd spark/conf/
cp spark-env.sh.template spark-env.sh
vim spark-env.sh
export JAVA_HOME=/usr/local/java
export HADOOP_CONF_DIR=/mnt/datasphere/hadoop/etc/hadoop/
export YARN_CONF_DIR=/mnt/datasphere/hadoop/etc/hadoop/
export SPARK_DIST_CLASSPATH=$(/mnt/datasphere/hadoop/bin/hadoop classpath)
sudo vim /root/.bash_profile
export PATH=/mnt/datasphere/spark/bin:$PATH
. /root/.bash_profile
cd ..
spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster --driver-memory 4g --executor-memory 2g --executor-cores 1 --queue default examples/jars/spark-examples*.jar 10
spark-sql -e "show databases"
访问yarn控制台查看执行结果 http://datasphere-server:8088

三、安装DataSphere Studio & Linkis

mv dss_linkis_one-click_install_20221201.zip /mnt/datasphere
cd /mnt/datasphere
unzip -q dss_linkis_one-click_install_20221201.zip
cd dss_linkis_one-click_install_20221201/
cd conf/
cp config.sh config.sh-bak
vim config.sh
deployUser=hadoop
LINKIS_VERSION=1.1.1
DSS_NGINX_IP=192.168.1.134
DSS_WEB_PORT=8085
DSS_VERSION=1.1.1
WORKSPACE_USER_ROOT_PATH=file:///tmp/linkis/ 
HDFS_USER_ROOT_PATH=hdfs:///tmp/linkis 
RESULT_SET_ROOT_PATH=hdfs:///tmp/linkis 
ENGINECONN_ROOT_PATH=/appcom/tmp
HADOOP_CONF_DIR=/mnt/datasphere/hadoop/etc/hadoop/  #Hadoop spark hive配置目录根据实际情况修改
HIVE_CONF_DIR=/mnt/datasphere/hive/conf
SPARK_CONF_DIR=/mnt/datasphere/spark/conf/
LINKIS_PUBLIC_MODULE=lib/linkis-commons/public-module
YARN_RESTFUL_URL=http://datasphere-server:8088
SPARK_VERSION=2.4.3
HIVE_VERSION=2.3.3
PYTHON_VERSION=python2
LINKIS_EUREKA_INSTALL_IP=127.0.0.1
LINKIS_EUREKA_PORT=9600
LINKIS_GATEWAY_PORT=9001
LINKIS_MANAGER_PORT=9101
LINKIS_ENGINECONNMANAGER_PORT=9102
LINKIS_ENGINECONN_PLUGIN_SERVER_PORT=9103
LINKIS_ENTRANCE_PORT=9104
LINKIS_PUBLICSERVICE_PORT=9105
LINKIS_CS_PORT=9108
export SERVER_HEAP_SIZE="512M"
EMAIL_HOST=smtp.163.com
EMAIL_PORT=25
EMAIL_USERNAME=xxx@163.com
EMAIL_PASSWORD=xxxxx
EMAIL_PROTOCOL=smtp
ORCHESTRATOR_FILE_PATH=/appcom/tmp/dss
EXECUTION_LOG_PATH=/appcom/tmp/dss
cp db.sh db.sh-bak
vim db.sh
### for DSS-Server and Eventchecker APPCONN
MYSQL_HOST=192.168.1.134
MYSQL_PORT=3306
MYSQL_DB=dss
MYSQL_USER=dss
MYSQL_PASSWORD=Qwer@123
#主要是配合scriptis一起使用,如果不配置,会默认尝试通过$HIVE_CONF_DIR 中的配置文件获取
HIVE_META_URL=jdbc:mysql://192.168.1.134:3306/hive?useSSL=false
HIVE_META_USER=hive
HIVE_META_PASSWORD=Qwer@123
sudo mkdir /appcoms
sudo chown -R hadoop:hadoop /appcoms

执行安装脚本

cd ../bin

sh install.sh # 安装时,脚本会询问您是否需要初始化数据库并导入元数据,Linkis 和 DSS 均会询问,第一次安装必须选是,其他按需

2: Dangerous! Clear all data and rebuild the tables

修改linkis-ps-publicservice.properties配置,否则hive数据库刷新不出来表

cd ../linkis/conf/
vim linkis-ps-publicservice.properties 
hive.meta.url=jdbc:mysql://192.168.1.134:3306/hive?useSSL=false
hive.meta.user=hive
hive.meta.password=Qwer@123
linkis.metadata.hive.permission.with-login-user-enabled=false
hadoop.config.dir=/mnt/datasphere/hadoop/etc/hadoop/

拷贝缺少的jar

cp /mnt/datasphere/hive/lib/datanucleus-* /mnt/datasphere/dss_linkis_one-click_install_20221201/linkis/lib/linkis-engineconn-plugins/hive/dist/v2.3.3/lib/

cp /mnt/datasphere/hive/lib/*jdo*  /mnt/datasphere/dss_linkis_one-click_install_20221201/linkis/lib/linkis-engineconn-plugins/hive/dist/v2.3.3/lib/

配置环境变量

cd /mnt/datasphere/dss_linkis_one-click_install_20221201/linkis/conf
这个目录下properties文件中都加上
hadoop.config.dir=/mnt/datasphere/hadoop/etc/hadoop/
hive.config.dir=/mnt/datasphere/hadoop/etc/hadoop/
spark.config.dir=/mnt/datasphere/hadoop/etc/hadoop/
这个目录下sh文件中都加上
HADOOP_CONF_DIR=/mnt/datasphere/hadoop/etc/hadoop
export HADOOP_CONF_DIR=/mnt/datasphere/hadoop/etc/hadoop
HIVE_CONF_DIR=/mnt/datasphere/hive/conf/
export HIVE_CONF_DIR=/mnt/datasphere/hive/conf/
SPARK_CONF_DIR=/mnt/datasphere/spark/conf/
export SPARK_CONF_DIR=/mnt/datasphere/spark/conf/

启动

cd  /mnt/datasphere/dss_linkis_one-click_install_20221201/bin

sh start-all.sh


http://192.168.1.134:9600/  #Eureka地址查看微服务是否正常

http://192.168.1.134:8085/  #登录界面  用户:hadoop 密码:hadoop

安装默认Appconn

cd /mnt/datasphere/dss_linkis_one-click_install_20221201/dss/bin

sh install-default-appconn.sh

修改队列名称

yarn rmadmin -refreshQueues #允许所有用户使用所有队列,也可以单独设置

回到顶部

 

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
存储 数据采集 数据管理
一体化元数据管理平台——OpenMetadata入门宝典
一体化元数据管理平台——OpenMetadata入门宝典
3351 0
|
消息中间件 SQL 分布式计算
一篇文章搞定数据同步工具SeaTunnel
一篇文章搞定数据同步工具SeaTunnel
9861 1
|
Prometheus 监控 Cloud Native
DataSophon手动部署Doris操作指南
DataSophon手动部署Doris操作指南
2700 0
|
资源调度 分布式计算 数据可视化
DolpinScheduler2.0.5详细介绍与踩坑实战
大数据之DolpinScheduler2.0.5详细介绍与踩坑实战
DolpinScheduler2.0.5详细介绍与踩坑实战
|
SQL 存储 Oracle
6 张图带你彻底搞懂分布式事务 XA 模式
XA 协议是由 X/Open 组织提出的分布式事务处理规范,主要定义了事务管理器 TM 和局部资源管理器 RM 之间的接口。目前主流的数据库,比如 oracle、DB2 都是支持 XA 协议的。
14037 1
6 张图带你彻底搞懂分布式事务 XA 模式
|
前端开发 关系型数据库 MySQL
DataSphere Studio AppConn 部署
DataSphere Studio AppConn 部署
|
5月前
|
NoSQL 测试技术 Redis
Redis批量删除Key的三种方式
Redis批量删除Key是优化数据库性能的重要操作,本文介绍三种高效方法:1) 使用通配符匹配(KEYS/SCAN+DEL),适合不同数据规模;2) Lua脚本实现原子化删除,适用于需要事务保障的场景;3) 管道批量处理提升效率。根据实际需求选择合适方案,注意操作不可逆,建议先备份数据,避免内存溢出或阻塞。
|
9月前
|
人工智能 运维 Cloud Native
【技术产品】DS三剑客:DeepSeek、DataSophon、DolphineSchduler浅析
在大数据与云原生技术快速发展的时代,开源技术成为推动行业进步的重要力量。本文深入探讨了三个备受瞩目的开源产品组件:DeepSeek、DataSophon 和 DolphinScheduler。DeepSeek 是专注于自然语言处理的大语言模型,具备多模态交互和高效推理功能;DataSophon 是大数据云原生平台的智能管家,提供快速部署和智能化运维;DolphinScheduler 则是分布式任务调度系统,支持复杂工作流的编排与执行。三者分别在大语言模型、大数据管理和任务调度领域展现了强大的技术实力,并通过技术互补共同推动AI与大数据技术的深度融合。
1227 2
【技术产品】DS三剑客:DeepSeek、DataSophon、DolphineSchduler浅析
|
数据采集 人工智能 数据管理
12款开源数据资产(元数据)管理平台选型分析(二)
12款开源数据资产(元数据)管理平台选型分析(二)
3089 0
|
10月前
|
SQL 分布式计算 Java
Spark SQL向量化执行引擎框架Gluten-Velox在AArch64使能和优化
本文摘自 Arm China的工程师顾煜祺关于“在 Arm 平台上使用 Native 算子库加速 Spark”的分享,主要内容包括以下四个部分: 1.技术背景 2.算子库构成 3.算子操作优化 4.未来工作
1334 0