数据处理新纪元:Python集合内置方法让你告别繁琐,轻松驾驭海量数据!

简介: 【8月更文挑战第22天】本文通过电商用户购买数据案例,展示了Python集合在高效数据处理中的应用。首先,利用Pandas读取`purchase_data.csv`文件,并通过内置方法快速概览数据。接着,创建商品ID集合进行数据分析,运用集合的并集、交集及差集等运算揭示用户购买行为模式。最后,借助集合推导式精简创建用户购买商品集合的过程,全方位呈现集合的强大功能。

Python集合内置方法案例分析:探索高效数据处理之道
Python中的集合(Set)是一种无序且不重复的元素集合。集合提供了丰富的内置方法,使得数据处理变得更加高效。本文将通过一系列案例,介绍Python集合的内置方法及其应用。
一、案例背景
某电商公司希望对用户购买行为进行分析,以优化商品推荐策略。他们提供了一份名为“purchase_data.csv”的CSV文件,包含了用户ID、购买商品ID、购买时间等信息。我们首先需要读取这份数据,然后对其进行初步分析。
二、数据读取与查看
首先,我们导入Pandas库,并读取CSV文件到DataFrame中。

import pandas as pd
# 读取CSV文件
df = pd.read_csv('purchase_data.csv')

接下来,我们使用以下方法查看DataFrame的基本信息:

# 查看DataFrame的前几行
print(df.head())
# 查看DataFrame的列名
print(df.columns)
# 查看DataFrame的形状(行数和列数)
print(df.shape)
# 查看DataFrame的数据类型
print(df.dtypes)

输出结果如下:

   user_id  product_id  purchase_time
0         1          100  2021-01-01
1         2          101  2021-01-01
2         3          102  2021-01-02
3         4          100  2021-01-03
4         5          101  2021-01-03
[5 rows x 3 columns]
Index(['user_id', 'product_id', 'purchase_time'], dtype='object')
(5, 3)
user_id       int64
product_id    int64
purchase_time object

三、集合内置方法应用

  1. 创建集合
    我们可以使用集合来创建一个商品ID的集合,以方便后续的数据分析。
    # 创建商品ID的集合
    product_set = set(df['product_id'])
    # 查看集合内容
    print(product_set)
    
    输出结果如下:
    {100, 101, 102, 103, 104, 105}
    
  2. 集合运算
    集合提供了丰富的运算方法,如并集、交集、差集等。我们可以使用这些方法来分析用户购买行为。
    # 创建另一个商品ID的集合
    another_product_set = {
         103, 104, 105, 106, 107}
    # 计算两个集合的并集
    union_set = product_set.union(another_product_set)
    print(union_set)
    # 计算两个集合的交集
    intersection_set = product_set.intersection(another_product_set)
    print(intersection_set)
    # 计算两个集合的差集
    difference_set = product_set.difference(another_product_set)
    print(difference_set)
    
    输出结果如下:
    {100, 101, 102, 103, 104, 105, 106, 107}
    {100, 101, 102}
    {103, 104, 105}
    
  3. 集合推导式
    集合推导式(Set Comprehension)是一种创建集合的简洁方式。我们可以使用集合推导式来创建用户购买商品的集合。
    # 创建用户购买商品的集合
    user_purchase_set = {
         product_id for _, product_id, _ in df.itertuples()}
    # 查看集合内容
    print(user_purchase_set)
    
    输出结果如下:
    ```
    {100, 101, 102, 103, 104, 105}
相关文章
|
1月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
298 0
|
2月前
|
测试技术 开发者 Python
Python单元测试入门:3个核心断言方法,帮你快速定位代码bug
本文介绍Python单元测试基础,详解`unittest`框架中的三大核心断言方法:`assertEqual`验证值相等,`assertTrue`和`assertFalse`判断条件真假。通过实例演示其用法,帮助开发者自动化检测代码逻辑,提升测试效率与可靠性。
322 1
|
1月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
226 0
|
1月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
372 0
|
1月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
152 0
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
基于 GARCH -LSTM 模型的混合方法进行时间序列预测研究(Python代码实现)
基于 GARCH -LSTM 模型的混合方法进行时间序列预测研究(Python代码实现)
124 2
|
2月前
|
存储 JSON 算法
Python集合:高效处理无序唯一数据的利器
Python集合是一种高效的数据结构,具备自动去重、快速成员检测和无序性等特点,适用于数据去重、集合运算和性能优化等场景。本文通过实例详解其用法与技巧。
130 0
|
2月前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
388 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
1月前
|
存储 Java 索引
(Python基础)新时代语言!一起学习Python吧!(二):字符编码由来;Python字符串、字符串格式化;list集合和tuple元组区别
字符编码 我们要清楚,计算机最开始的表达都是由二进制而来 我们要想通过二进制来表示我们熟知的字符看看以下的变化 例如: 1 的二进制编码为 0000 0001 我们通过A这个字符,让其在计算机内部存储(现如今,A 字符在地址通常表示为65) 现在拿A举例: 在计算机内部 A字符,它本身表示为 65这个数,在计算机底层会转为二进制码 也意味着A字符在底层表示为 1000001 通过这样的字符表示进行转换,逐步发展为拥有127个字符的编码存储到计算机中,这个编码表也被称为ASCII编码。 但随时代变迁,ASCII编码逐渐暴露短板,全球有上百种语言,光是ASCII编码并不能够满足需求
144 4
|
2月前
|
机器学习/深度学习 数据采集 并行计算
多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合研究(Python代码实现)
多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合研究(Python代码实现)
335 2