多模态AI单词助记模型体验

本文涉及的产品
图像搜索,任选一个服务类型 1个月
简介: 一文带你了解多模态AI单词助记模型的优与劣

产品简介

本次体验的产品是一个可以帮助用户记忆单词的AI模型,基于星火认知大模型的多模态AI单词助记应用,旨在于通过荒谬而反直觉的故事和助记图片帮助用户记忆单词。提供两种模式,第一种是demo,点击“生成故事demo”,无需其他操作,等待20s生成即可;第二种是输入单词后,点击“生成故事”。本次体验有两个功能点,一个是图文记忆,一个是视觉学习。下面开始分别体验:点击该链接即可前往进行体验。

图文记忆

这个功能提供了两种模式,一个是demo,一个是自定义。

demo的话操作非常简单,只需要选择任意一组词汇,点击“生成故事demo”就行。如下

根据词汇生成的故事

根据故事会生成的图片提示词

根据提示词生成的图片

  • 这里可以很明显看出demo是有问题的,虽然提供了四组词汇,但无论你怎么选择,始终只会使用第一组,且无法根据提示词生成图片。

既然demo生成有问题,下面就体验自定义看看结果如何。

生成的故事

这个生成效果让我很吃惊,我词汇里明明是没有苹果等水果的啊,这怎么还上面的那个故事非常像呢。为了验证误差,我在此点击生成,如下:

这回的效果直接成了图片提示词了,不得不说效果非常糟糕。

在这里可能会有小伙伴质疑,你使用的是官网列子,肯定是会有同demo一样的问题啊,为了消除大家的顾虑,我输入了自定义词汇,生成故事如下:

看到这你是不是很无语啊,我的词汇里根本没有car吧。

  • 总结:其实从功能体验来看,目前还只能勉强算个demo吧,不但没法准确生成故事,更不用谈根据提示词生成图片了。实际上,从每次生成体验来看,文本框中的内容都是累加的,这就导致后面的词汇关联上了前面的,情况很糟糕。强烈建议优化后再上线。

视觉学习

为了避免误操作导致效果不精准,这里先就操作步骤简单描述,如下:

下面就分别体验上述三种上传方式,看看识别率怎么样。

  • 第一种上传本地图片,如下:

    这个识别率能达到90%,除了TV没有识别出外,其他均准确识别到了。点击生成释义看看效果如何:

    给出的释义还是非常不错的,例句也相对简单易懂,效果不错。
  • 第二种拍摄图片,操作步骤如下:

    看看识别效果如何:

    我这个拍摄的场景元素其实还是蛮负责的,既有近处元素,还有远处的。识别率80%,主要是后面的大冰箱和门框没有识别出来。但这个识别中的transparent,还是值得点赞的,它把盒子的透明度给识别出来了。点击生成释义,看看情况怎么样:

    生成释义的效果一如既往的好,通俗易懂,对于单词记忆有帮助。
  • 第三种读取剪切板图片,操作步骤如下:

    我任意选择一张图片进行复制操作,而后点击这里的按钮进行读取,识别效果如下:

    这个识别率还是挺高的,但可能违背了记忆英文单词的这个初衷,均没有给出相应的词汇。这里为了验证效果,我另外选择了一张,识别效果如下:

    从这里可以非常好地理解,为啥纯文字的识别有问题,是因为缺乏了识别的物体元素。这次的识别率还不错,就是这个phone和umbrella,我识别没看出是哪里体现了。
    看看生成释义情况如何:

    这个功能还是一如既往的稳定,值得点赞表扬。

体验总结

1、整个体验流程还是非常通顺的,通过魔塔模型可以直接在线体验,免去了传统部署搭建环境,主打一个开箱即用,高效便捷。

2、针对图文记忆模块,目前体验下来也就是demo效果,除了无法正常根据词汇准确生成故事,更没法根据提示词生成图片。此外,生成故事文本框的内容是没法手动删除的,而图片提示词文本框的内容又是可以的。虽然提供了四组词汇,但demo始终只认有apple的第一组,体验非常糟糕。

3、视觉学习模块整体效果非常不错,不但提供了三种图片上传方式,还温馨提供了example。图片的整体识别率还挺高,基本元素都能被识别到;生成释义和例句是这里非常值得点赞的一个功能点,除了单词多生成速度略慢外,其他均很优秀。这里唯一要吐槽的点是没有针对上传图片进行说明,也就是如果图片中是纯文字的,它可能无法识别成词汇,只有带有可识别物体元素的图片才能正常识别到词汇。

4、不管是图片记忆还是视觉学习,都没有针对既有内容设计清理按钮,用户需要主动选中删除键进行删除,有些文本框还不支持删除,这点体验非常不友好。

5、在模型开头的描述中,作者有提到后期的更新计划,比如加入本地单词库上传和选择预设单词库功能,还有克隆音色朗读功能等,这些点还是值得非常期待的,在这里感谢作者日夜编码,给大家带来优秀模型工具,期待更多功能点上线。

目录
打赏
0
0
1
0
1494
分享
相关文章
生成AI的两大范式:扩散模型与Flow Matching的理论基础与技术比较
本文系统对比了扩散模型与Flow Matching两种生成模型技术。扩散模型通过逐步添加噪声再逆转过程生成数据,类比为沙堡的侵蚀与重建;Flow Matching构建分布间连续路径的速度场,如同矢量导航系统。两者在数学原理、训练动态及应用上各有优劣:扩散模型适合复杂数据,Flow Matching采样效率更高。文章结合实例解析两者的差异与联系,并探讨其在图像、音频等领域的实际应用,为生成建模提供了全面视角。
74 1
Vibe Draw:涂鸦秒变3D模型!开源AI建模神器解放创意生产力
Vibe Draw 是一款基于AI技术的开源3D建模工具,通过Next.js和FastAPI构建,能将用户绘制的2D草图智能转化为3D模型,并支持文本提示优化和场景构建。
51 35
Vibe Draw:涂鸦秒变3D模型!开源AI建模神器解放创意生产力
AudioX:颠覆创作!多模态AI一键生成电影级音效+配乐,耳朵的终极盛宴
AudioX 是香港科技大学和月之暗面联合推出的扩散变换器模型,能够从文本、视频、图像等多种模态生成高质量音频和音乐,具备强大的跨模态学习能力和泛化能力。
119 36
AudioX:颠覆创作!多模态AI一键生成电影级音效+配乐,耳朵的终极盛宴
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
近年来,多模态表示学习在人工智能领域取得显著进展,CLIP和SigLIP成为里程碑式模型。CLIP由OpenAI提出,通过对比学习对齐图像与文本嵌入空间,具备强大零样本学习能力;SigLIP由Google开发,采用sigmoid损失函数优化训练效率与可扩展性。两者推动了多模态大型语言模型(MLLMs)的发展,如LLaVA、BLIP-2和Flamingo等,实现了视觉问答、图像描述生成等复杂任务。这些模型不仅拓展了理论边界,还为医疗、教育等领域释放技术潜力,标志着多模态智能系统的重要进步。
43 13
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
TripoSF:3D建模内存暴降80%!VAST AI新一代模型细节狂飙82%
TripoSF 是 VAST AI 推出的新一代 3D 基础模型,采用创新的 SparseFlex 表示方法,支持 1024³ 高分辨率建模,内存占用降低 82%,在细节捕捉和复杂结构处理上表现优异。
41 10
TripoSF:3D建模内存暴降80%!VAST AI新一代模型细节狂飙82%
模型即产品:万字详解RL驱动的AI Agent模型如何巨震AI行业范式
未来 AI 智能体的发展方向还得是模型本身,而不是工作流(Work Flow)。像 Manus 这样基于「预先编排好的提示词与工具路径」构成的工作流智能体,短期或许表现不错,但长期必然遇到瓶颈。这种「提示驱动」的方式无法扩展,也无法真正处理那些需要长期规划、多步骤推理的复杂任务。下一代真正的LLM智能体,则是通过「强化学习(RL)与推理(Reasoning)的结合」来实现的。
52 10
模型即产品:万字详解RL驱动的AI Agent模型如何巨震AI行业范式
利用通义灵码AI在VS Code中快速开发扫雷游戏:Qwen2.5-Max模型的应用实例
本文介绍了如何利用阿里云通义灵码AI程序员的Qwen2.5-Max模型,在VS Code中一键生成扫雷小游戏。通过安装通义灵码插件并配置模型,输入指令即可自动生成包含游戏逻辑与UI设计的Python代码。生成的游戏支持难度选择,运行稳定无Bug。实践表明,AI工具显著提升开发效率,但人机协作仍是未来趋势。建议开发者积极拥抱新技术,同时不断提升自身技能以适应行业发展需求。
22116 12
Agent TARS:一键让AI托管电脑!字节开源PC端多模态AI助手,无缝集成浏览器与系统操作
Agent TARS 是一款开源的多模态AI助手,能够通过视觉解析网页并无缝集成命令行和文件系统,帮助用户高效完成复杂任务。
2407 9
Agent TARS:一键让AI托管电脑!字节开源PC端多模态AI助手,无缝集成浏览器与系统操作
Cosmos-Reason1:物理常识觉醒!NVIDIA 56B模型让AI懂重力+时空法则
Cosmos-Reason1是NVIDIA推出的多模态大语言模型系列,具备物理常识理解和具身推理能力,支持视频输入和长链思考,可应用于机器人、自动驾驶等场景。
32 8
Cosmos-Reason1:物理常识觉醒!NVIDIA 56B模型让AI懂重力+时空法则
MM-StoryAgent:交大阿里联合开源!多模态AI一键生成儿童故事绘本+配音
MM-StoryAgent 是上海交通大学与阿里巴巴联合推出的开源多模态、多智能体框架,用于生成沉浸式的有声故事绘本视频,支持文本、图像、语音等多种模态的生成与对齐。
102 7
MM-StoryAgent:交大阿里联合开源!多模态AI一键生成儿童故事绘本+配音

热门文章

最新文章