【Python-Numpy】numpy.random.binomial()的解析与使用

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 本文介绍了NumPy的`numpy.random.binomial()`函数,用于从二项分布中抽取样本,适用于模拟具有固定试验次数和成功概率的随机实验,并提供了如何使用该函数进行概率计算和模拟实验的示例。

1 作用

从二项分布中抽取样本。
从具有指定参数,n次试验和p个成功概率的二项式分布中抽取样本,其中n个整数> = 0,且p在[0,1]区间内。(n可以作为浮点输入,但在使用中会被截断为整数)

2 参数解析

numpy.random.binomial(n,p,size = None )

  • n
    n个int或int的数组
    分布的参数,> =0。也接受浮点数,但它们将被截断为整数。

  • p
    float或float数组
    分布参数> = 0和<= 1。

  • size
    int或int元组,可选
    输出形状。如果给定的形状,如果size为(默认),则和均为标量时,将返回单个值。

3 何时使用

当使用随机样本估算总体中某个比例的标准误差时,正态分布就很好,除非乘积p * n <= 5,其中p =总体比例估计,n =样本数,在这种情况下而是使用二项式分布。

例如,一个15个人的样本显示了4个左撇子和11个右撇子。那么p = 4/15 = 27%。0.27 * 15 = 4,小于5,因此在这种情况下应使用二项式分布。

3 举例使用

1、 从分布中抽取样本:投掷硬币10次的结果,测试了1000次。

n, p = 10, .5  # n样本数量, p每个样本的概率
s = np.random.binomial(n, p, 1000)

2、一个真实的例子。一家公司钻了9口石油勘探井,每口井的成功概率估计为0.1。所有九口井都失败了。发生这种情况的可能性是多少?
让我们对模型进行20,000次试验,并计算产生零阳性结果的数目。

sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.

输出
0.38885

目录
相关文章
|
9天前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
7天前
|
数据挖掘 vr&ar C++
让UE自动运行Python脚本:实现与实例解析
本文介绍如何配置Unreal Engine(UE)以自动运行Python脚本,提高开发效率。通过安装Python、配置UE环境及使用第三方插件,实现Python与UE的集成。结合蓝图和C++示例,展示自动化任务处理、关卡生成及数据分析等应用场景。
53 5
|
20天前
|
存储 缓存 Python
Python中的装饰器深度解析与实践
在Python的世界里,装饰器如同一位神秘的魔法师,它拥有改变函数行为的能力。本文将揭开装饰器的神秘面纱,通过直观的代码示例,引导你理解其工作原理,并掌握如何在实际项目中灵活运用这一强大的工具。从基础到进阶,我们将一起探索装饰器的魅力所在。
|
24天前
|
Android开发 开发者 Python
通过标签清理微信好友:Python自动化脚本解析
微信已成为日常生活中的重要社交工具,但随着使用时间增长,好友列表可能变得臃肿。本文介绍了一个基于 Python 的自动化脚本,利用 `uiautomator2` 库,通过模拟用户操作实现根据标签批量清理微信好友的功能。脚本包括环境准备、类定义、方法实现等部分,详细解析了如何通过标签筛选并删除好友,适合需要批量管理微信好友的用户。
34 7
|
26天前
|
XML 数据采集 数据格式
Python 爬虫必备杀器,xpath 解析 HTML
【11月更文挑战第17天】XPath 是一种用于在 XML 和 HTML 文档中定位节点的语言,通过路径表达式选取节点或节点集。它不仅适用于 XML,也广泛应用于 HTML 解析。基本语法包括标签名、属性、层级关系等的选择,如 `//p` 选择所有段落标签,`//a[@href=&#39;example.com&#39;]` 选择特定链接。在 Python 中,常用 lxml 库结合 XPath 进行网页数据抓取,支持高效解析与复杂信息提取。高级技巧涵盖轴的使用和函数应用,如 `contains()` 用于模糊匹配。
|
26天前
|
测试技术 开发者 Python
使用Python解析和分析源代码
本文介绍了如何使用Python的`ast`模块解析和分析Python源代码,包括安装准备、解析源代码、分析抽象语法树(AST)等步骤,展示了通过自定义`NodeVisitor`类遍历AST并提取信息的方法,为代码质量提升和自动化工具开发提供基础。
43 8
|
1月前
|
数据可视化 图形学 Python
在圆的外面画一个正方形:Python实现与技术解析
本文介绍了如何使用Python的`matplotlib`库绘制一个圆,并在其外部绘制一个正方形。通过计算正方形的边长和顶点坐标,实现了圆和正方形的精确对齐。代码示例详细展示了绘制过程,适合初学者学习和实践。
43 9
|
3月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
110 0
|
4月前
|
机器学习/深度学习 数据处理 计算机视觉
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
66 0
|
1月前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
51 3

热门文章

最新文章