应用层---网络模型

简介: 应用层---网络模型

一. C/S模型(client/server,客户/服务器模型)

定义

C/S模型是指Client/Server模型,是一种常见的网络应用程序架构。在这种模型中,有一个客户端程序(Client)和一个服务器程序(Server),客户端和服务器通过特定的协议进行通信

工作原理

在这个模型中,客户端程序向服务器发送请求,服务器接收请求并返回响应,客户端再根据响应进行相应的操作。C/S模型可以通过网络实现,使得客户端和服务器可以位于不同的计算机上从而实现分布式计算和数据存储

功能特点

  • 客户端:
  • 主动与服务器通信
  • 与互联网有间歇性的连接
  • 可能是动态IP 地址
  • 不直接与其它客户端通信
  • 服务器:
  • 需要保持运行以提供服务
  • 固定的IP地址和周知的端口号(约定)
  • 数据中心进行扩展

优势

  • 交互性:客户端可以实时地与服务器进行交互,实现数据的实时交换。
  • 可扩展性:C/S模型具有良好的扩展性,可以根据需要增加客户端或服务器,实现系统的可扩展性。
  • 安全性:由于客户端和服务器之间的通信是加密的,因此数据传输比较安全。

应用

C/S模型的应用非常广泛,例如网上银行、在线购物、社交网络等都需要使用这种模型。

在C/S模型中,客户端通常需要安装独立的的应用程序,而服务器则是提供公共服务的的地方,可以被多个客户端同时访问。

例如网络游戏、在线银行、电子商务等。

二. P2P(peer to peer)模型

定义

P2P模型是指对等点模型(Peer-to-Peer模型)。这是一种网络架构模式,每个节点都充当着客户端和服务器的角色,可以向其他节点请求和提供服务。使得网络中的每个节点都可以直接相互通信,而不需要通过中央服务器进行中转

特点

  • IP地址可改变:节点可以有动态IP地址
  • 可扩展性好:P2P模型可以无限扩展,不受服务器数量的限制,使得大规模的分布式计算和文件共享成为可能。
  • 网络健壮性强网络不容易瘫痪,P2P网络中的每个节点都可以提供数据,因此部分主机或节点坏掉或者大量主机涌入网络时,主机之间依然可以正常请求与提供服务(资源足够,带宽不受限),不会影响整个网络的功能。
  • (几乎)没有一直运行的 “服务器”
  • 任意端系统之间可以进行通信
  • 自扩展性-新peer节点带来新的服务能力,当然也带来新的服务请求
  • 参与的主机间歇性连接且可以改变IP 地址
  • P2P模型也存在缺点
  • 1.搜索效率:在P2P模型中,搜索特定资源需要遍历整个网络效率较低
  • 2.资源共享问题:在P2P模型中,资源共享需要占用网络带宽和节点计算资源,可能会影响网络性能
  • 3.难以管理
  • 原因主要有以下几点:
  • 去中心化:P2P模型取消了中心服务器,每个节点都充当着客户端和服务器的角色,管理变得分散和复杂。
  • 节点匿名性:在P2P模型中,节点之间的通信通常是基于匿名的方式,这使得管理者难以识别和定位特定节点。
  • 动态性:P2P模型中的节点是动态变化的,随时可能加入或离开网络,这使得管理者难以跟踪和监控网络状态。
  • 资源共享问题:在P2P模型中,资源共享需要占用网络带宽和节点计算资源,可能会影响网络性能。同时,也存在一些资源共享的问题,如版权侵犯、非法内容等。

因此,对于P2P模型的管理需要采取一些特殊的措施,如基于信誉的系统、过滤器、内容审查等,来实现对P2P网络的有效管理。

应用

P2P模型可以应用于各种领域,例如文件共享、分布式计算、网络存储等。P2P模型适用于大规模、分布式的计算和文件共享场景,如BitTorrent、Emule等文件共享软件。

* 例子: Gnutella,迅雷

三. 混合体:客户-服务器和对等体系结构

定义

混合体:客户-服务器和对等体系结构是一种结合了客户-服务器模型和对等体系结构的网络结构模式。在混合体中,客户端和服务器端之间的通信和对等节点之间的通信可以同时进行,相互协作完成特定的任务

  • C/S和P2P体系结构的混合体 应用实例
  • Napster(MP3下载软件)
  • 文件搜索:集中
  • 主机在中心服务器上注册其资源
  • 主机向中心服务器查询资源位置
  • 文件传输:P2P
  • 任意Peer节点之间
  • 即时通信
  • 在线检测:集中
  • 当用户上线时,向中心服务器注册其IP地址
  • 用户与中心服务器联系,以找到其在线好友的位置
  • 两个用户之间聊天:P2P

优点

混合体结构具有以下优点:

扩展性:混合体结构具有良好的扩展性,可以随时增加新的节点或组件,提高系统的性能和容量。

灵活性强:混合体结构中的节点可以直接相互通信,无需经过中心服务器,使得网络连接更加灵活。

可靠性高:混合体结构中的每个节点都承担着一定的负载,使得网络更加可靠和稳定。

缺点

但是,混合体结构也存在一些缺点:

复杂性高:混合体结构需要同时处理客户-服务器通信和对等节点之间的通信,系统设计和实现相对复杂。

资源共享问题:在混合体结构中,资源共享需要占用网络带宽和节点计算资源,可能会影响网络性能

应用

混合体结构适用于需要同时支持客户-服务器通信和对等节点之间的通信的场景,如一些分布式计算、文件共享、社交网络等应用。

目录
相关文章
|
22天前
|
消息中间件 存储 Serverless
函数计算产品使用问题之怎么访问网络附加存储(NAS)存储模型文件
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
22天前
|
Kubernetes 负载均衡 网络安全
Kubernetes 网络模型与实践
【8月更文第29天】Kubernetes(K8s)是当今容器编排领域的佼佼者,它提供了一种高效的方式来管理容器化应用的部署、扩展和运行。Kubernetes 的网络模型是其成功的关键因素之一,它支持服务发现、负载均衡和集群内外通信等功能。本文将深入探讨 Kubernetes 的网络模型,并通过实际代码示例来展示服务发现和服务网格的基本概念及其实现。
37 1
|
1月前
|
机器学习/深度学习 API 异构计算
7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。
|
18天前
|
网络协议 数据安全/隐私保护 网络架构
计算机网络模型
【9月更文挑战第2天】
44 24
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习模型之深度神经网络的特点
深度神经网络(Deep Neural Networks, DNNs)是一类机器学习模型,通过多个层级(层)的神经元来模拟人脑的工作方式,从而实现复杂的数据处理和模式识别任务。
14 1
|
16天前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
19天前
|
分布式计算 负载均衡 监控
p2p网络架构模型
P2P(Peer-to-Peer)模式是一种网络架构模型,在这种模型中,每个节点(peer)既是服务的提供者也是服务的消费者。这意味着每个参与的节点都可以直接与其他节点通信,并且可以相互提供资源和服务,例如文件共享、流媒体传输等。
22 6
|
16天前
|
网络协议 安全 网络安全
C语言 网络编程(四)常见网络模型
这段内容介绍了目前被广泛接受的三种网络模型:OSI七层模型、TCP五层模型以及TCP/IP四层模型,并简述了多个网络协议的功能与特性,包括HTTP、HTTPS、FTP、DNS、SMTP、TCP、UDP、IP、ICMP、ARP、RARP及SSH协议等,同时提到了ssh的免费开源实现openssh及其在Linux系统中的应用。
|
1月前
|
算法 前端开发 数据挖掘
【类脑智能】脑网络通信模型分类及量化指标(附思维导图)
本文概述了脑网络通信模型的分类、算法原理及量化指标,介绍了扩散过程、路由协议和参数模型三种通信模型,并详细讨论了它们的性能指标、优缺点以及在脑网络研究中的应用,同时提供了思维导图以帮助理解这些概念。
32 3
【类脑智能】脑网络通信模型分类及量化指标(附思维导图)
|
27天前
|
监控 安全 网络安全
零信任安全模型及其在网络中的实现
【8月更文挑战第24天】
58 1