AI工具-标注工具labelme

简介: Labelme是一款Python开源图像标注工具,支持图像分类、目标检测、语义分割和实例分割等任务。它提供了一个GUI界面,用户可绘制圆形、方形和多边形进行标注。安装通过`pip install labelme`和`lxml`,使用时可导入预定义标签列表。标注结果保存为json文件,包含类别、边界框信息和形状类型。Labelme还支持格式转换,如转换为VOC或COCO格式。这款工具对视频标注也兼容。5月更文挑战第9天

AI工具-标注工具labelme

在人工智能领域,数据是一切应用的基础,特别是有标签的数据。今天介绍一款在图像视觉领域的基于python开源打标签工具Labelme, 该工具可以支持图像分类,目标检测, 语义分割和实例分割等最常见的视觉任务。

其他类似的工具有Labelimg

md-2022-03-27-22-37-18.png

1. 安装

lableme开源代码见 https://github.com/wkentaro/labelme

本地安装如下:

pip install labelme
pip install lxml

## 运行
./labelme

md-2022-03-15-11-39-02.png

2 使用

从上面的界面(pyQt)可以看出Labelme

  • 左边为标注的图形:支持圆形,方形 和多边形
  • 中间为图像标注区域
  • 右边为类别和文件信息

md-2022-03-15-13-58-13.png

作为打标工具,Labelme是支持在标注时再输入标签类别信息,但是建议在标注之前构建一个标签元数据,作为输入。

建议的使用步骤如下:

构建标签列表
创建标签名称label.txt,格式如下前面两行为固定

__ignore__
_background_
dog
cat

导入标签,并启动

labelme --labels label.txt

开始标注
根据标注任务的不同,Labelme会生成一个与图片名称相同的json文件,以目标检测为例,标注好的json样例为:

{
   
   
  "version": "4.6.0",
  "flags": {
   
   },
  "shapes": [
    {
   
   
      "label": "nochefclothes",
      "points": [
        [
          278.53846153846155,
          390.3076923                                                     
        ],
        [
          513.9230769230769,
          955.5384615384615
        ]
      ],
      "group_id": null,
      "shape_type": "rectangle",
      "flags": {
   
   }
    }
  ],
  "imagePath": "3a7b9c1896e19feab13bc201cbf2a86b.jpeg",
  "imageData": "",
  "imageHeight": 1000,
  "imageWidth": 798
}

可以看出

  • label为类别信息,
  • points为bounding box位置信息,如果是目标检测(方形)分别为左上(xmin,ymin)和右下(xmax, ymax)的坐标信息,如果是语义分割和实例分割,则为多个点
  • shape_type: 目标检测为rectangle, 语义分割和实例分割为polysgons

等标注完成,保存即可;标注完成之后想查看标注结果,可以通过不同的方式来打开

# 空白
labelme --labels label.txt

# 单图json
labelme ./img1.json --labels label.txt

# 目录方式
labelme ./img_dir --labels label.txt

另外,Labelme也是支持视频标注的。通过视频抽帧之后再标注。

3. 格式转换

由于Labelme是按照json格式来保存标注结果的,这和现有的常用任务格式有些区别,如目标检测的VOC COCO等,Labelme也提供的相应的转换工具脚本进行转换,十分方便。

  • 转换voc
# It generates:
#   - data_dataset_voc/JPEGImages
#   - data_dataset_voc/SegmentationClass
#   - data_dataset_voc/SegmentationClassVisualization
#   - data_dataset_voc/SegmentationObject
#   - data_dataset_voc/SegmentationObjectVisualization
./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt

python -u labelme2voc.py ./multi_defect ./multi_defect_voc --labels ./labels.txt --noviz
  • 转换coco
# It generates:
#   - data_dataset_coco/JPEGImages
#   - data_dataset_coco/annotations.json
./labelme2coco.py data_annotated data_dataset_coco --labels labels.txt

4. 总结

本文简单分享了开源标注工具Labelme的使用,希望对你有帮助。先总结如下:

  • labelme适用于图像分类、目标检测、语义分割、实例分割
  • labelme 图片视频都可用
  • 开始新建立标签文件,记住前两行是固定的(没有特别的含义,就是代码逻辑是这样的)
  • json注意label,points和shape_type
  • labelme2voc和labelme2coco来转换经典格式
目录
相关文章
|
2天前
|
设计模式 人工智能 API
Cursor 上线最新 AI 模型 Claude 3.7 Max:200k上下文+200次工具调用!史上最强代码助手硬核上线
Claude 3.7 Max 是 Cursor 推出的最新 AI 模型,支持 200k 上下文窗口和 200 次工具调用,专为复杂代码任务设计,适合硬核开发者和大型项目。
94 6
Cursor 上线最新 AI 模型 Claude 3.7 Max:200k上下文+200次工具调用!史上最强代码助手硬核上线
|
13天前
|
机器学习/深度学习 人工智能 JSON
Resume Matcher:增加面试机会!开源AI简历优化工具,一键解析简历和职位描述并优化
Resume Matcher 是一款开源AI简历优化工具,通过解析简历和职位描述,提取关键词并计算文本相似性,帮助求职者优化简历内容,提升通过自动化筛选系统(ATS)的概率,增加面试机会。
85 18
Resume Matcher:增加面试机会!开源AI简历优化工具,一键解析简历和职位描述并优化
|
17天前
|
人工智能 API 语音技术
WhisperChain:开源 AI 实时语音转文字工具!自动消噪优化文本,效率翻倍
WhisperChain 是一款基于 Whisper.cpp 和 LangChain 的开源语音识别工具,能够实时将语音转换为文本,并自动清理和优化文本内容,适用于会议记录、写作辅助等多种场景。
610 2
WhisperChain:开源 AI 实时语音转文字工具!自动消噪优化文本,效率翻倍
|
16天前
|
人工智能 数据可视化 前端开发
Probly:开源 AI Excel表格工具,交互式生成数据分析结果与可视化图表
Probly 是一款结合电子表格功能与 Python 数据分析能力的 AI 工具,支持在浏览器中运行 Python 代码,提供交互式电子表格、数据可视化和智能分析建议,适合需要强大数据分析功能又希望操作简便的用户。
211 2
|
19天前
|
人工智能 自然语言处理 程序员
下载量突破400万,百万开发者首选的 AI 编码工具通义灵码是如何炼成的?
下载量突破400万,百万开发者首选的 AI 编码工具通义灵码是如何炼成的?
|
19天前
|
人工智能 IDE 测试技术
如何用好 AI 编码工具,让通义灵码帮你做更多工作
如何用好 AI 编码工具,让通义灵码帮你做更多工作
|
19天前
|
人工智能 弹性计算 开发工具
新发布!阿里云发布最新AI模型、工具及基础设施,建构高效全球AI社群
新发布!阿里云发布最新AI模型、工具及基础设施,建构高效全球AI社群
|
18天前
|
人工智能 弹性计算 Ubuntu
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
本文介绍了如何使用阿里云提供的DeepSeek-R1大模型解决方案,通过Chatbox和Dify平台调用百炼API,实现稳定且高效的模型应用。首先,文章详细描述了如何通过Chatbox配置API并开始对话,适合普通用户快速上手。接着,深入探讨了使用Dify部署AI应用的过程,包括选购云服务器、安装Dify、配置对接DeepSeek-R1模型及创建工作流,展示了更复杂场景下的应用潜力。最后,对比了Chatbox与Dify的输出效果,证明Dify能提供更详尽、精准的回复。总结指出,阿里云的解决方案不仅操作简便,还为专业用户提供了强大的功能支持,极大提升了用户体验和应用效率。
970 19
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
|
11天前
|
人工智能 前端开发 JavaScript
AI程序员:通义灵码 2.0应用VScode前端开发深度体验
AI程序员:通义灵码 2.0应用VScode前端开发深度体验,在软件开发领域,人工智能技术的融入正深刻改变着程序员的工作方式。通义灵码 2.0 作为一款先进的 AI 编程助手,与广受欢迎的代码编辑器 Visual Studio Code(VScode)相结合,为前端开发带来了全新的可能性。本文将详细分享通义灵码 2.0 在 VScode 前端开发环境中的深度使用体验。
132 2
|
5天前
|
Web App开发 人工智能 机器人
牛逼,这款开源聊天应用竟能一键召唤多个AI助手,跨平台通话神器!
`JiwuChat`是一款基于Tauri2和Nuxt3构建的轻量化多平台即时通讯工具,仅约8MB体积却集成了**AI群聊机器人**、**WebRTC音视频通话**、**屏幕共享**等前沿功能。一套代码适配Windows/macOS/Linux/Android/iOS/Web六大平台,堪称开发者学习跨端开发的绝佳样板!

热门文章

最新文章