[并发编程基础] Java线程的创建方式

简介: [并发编程基础] Java线程的创建方式

线程的创建方式

继承 Thread

  1. 创建一个继承 Thread 类的子类。
  2. 重写 Thread 类的 run() 方法。
  3. 在 run() 方法中编写线程要执行的任务。
  4. 创建 Thread 子类的对象。
  5. 调用 Thread 子类对象的 start() 方法来启动线程。
public class Demo {

    static class MyThread extends Thread {
        @Override
        public void run() {
            System.out.println(">>>> run ");
        }
    }

    public static void main(String[] args) {
        new MyThread().start();
        
    }
}

实现 Runnable 接口

  1. 创建一个实现 Runnable 接口的类。
  2. 在 Runnable 接口的 run() 方法中编写线程要执行的任务。
  3. 创建 Runnable 接口的实现类的对象。
  4. 将 Runnable 接口的实现类的对象传递给 Thread 类的构造方法来创建 Thread 对象。
  5. 调用 Thread 对象的 start() 方法来启动线程。
package org.example.create;

public class Demo1 {

    static class MyThread1 implements Runnable {
        @Override
        public void run() {
            System.out.println(">>>>> 2. 实现Runnable接口");
        }
    }

    public static void main(String[] args) throws Exception {
        new MyThread1().run();
        System.out.println("end");

    }
}

实现 Callable 接口

package org.example.create;

import java.util.concurrent.Callable;

public class Demo2 {

    static class MyThread implements Callable<Void> {
        @Override
        public Void call() throws Exception {
            System.out.println("3. 实现 Callable ");
            return null;
        }
    }

    public static void main(String[] args) throws Exception {
        new MyThread().call();
        System.out.println("end");

    }
}

使用 Lambda

package org.example.create;

public class Demo3 {


    public static void main(String[] args) throws Exception {
        new Thread(()->{
            System.out.println("4. 使用 lambda 表达式");
        }).run();
        System.out.println("end");

    }
}

使用线程池

package org.example.create;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class Demo4 {
    public static void main(String[] args) {
        ExecutorService executor = Executors.newFixedThreadPool(5);

        // 创建Runnable对象
        Runnable runnable = () -> {
            // 线程的执行逻辑
            System.out.println(Thread.currentThread().getId() + "线程执行逻辑");
        };

        // 提交任务给线程池
        for (int i = 0; i < 50; i++) {
            executor.submit(runnable);
        }

        // 关闭线程池
        executor.shutdown();
    }

}

线程创建相关的 jdk源码

Thread

package java.lang;

public class Thread implements Runnable {
    /* Make sure registerNatives is the first thing <clinit> does. */
    private static native void registerNatives();
    static {
        registerNatives();
    }
}

Runnable函数接口


package java.lang;
/**
The Runnable interface should be implemented by any class whose instances are intended to be executed by a thread. The class must define a method of no arguments called run.
This interface is designed to provide a common protocol for objects that wish to execute code while they are active. For example, Runnable is implemented by class Thread. Being active simply means that a thread has been started and has not yet been stopped.
In addition, Runnable provides the means for a class to be active while not subclassing Thread. A class that implements Runnable can run without subclassing Thread by instantiating a Thread instance and passing itself in as the target. In most cases, the Runnable interface should be used if you are only planning to override the run() method and no other Thread methods. This is important because classes should not be subclassed unless the programmer intends on modifying or enhancing the fundamental behavior of the class.
Since:
1.0
See Also:
Thread, java.util.concurrent.Callable

**/
@FunctionalInterface
public interface Runnable {
    /**
     * When an object implementing interface {@code Runnable} is used
     * to create a thread, starting the thread causes the object's
     * {@code run} method to be called in that separately executing
     * thread.
     * <p>
     * The general contract of the method {@code run} is that it may
     * take any action whatsoever.
     *
     * @see     java.lang.Thread#run()
     */
    public abstract void run();
}

Callable<V>函数接口


package java.util.concurrent;
/**
A task that returns a result and may throw an exception. Implementors define a single method with no arguments called call.
The Callable interface is similar to Runnable, in that both are designed for classes whose instances are potentially executed by another thread. A Runnable, however, does not return a result and cannot throw a checked exception.
The Executors class contains utility methods to convert from other common forms to Callable classes.
Since:
1.5
See Also:
Executor
Author:
Doug Lea
Type parameters:
<V> – the result type of method call
**/
@FunctionalInterface
public interface Callable<V> {
    /**
     * Computes a result, or throws an exception if unable to do so.
     *
     * @return computed result
     * @throws Exception if unable to compute a result
     */
    V call() throws Exception;
}

executors

package java.util.concurrent;
/**
Factory and utility methods for Executor, ExecutorService, ScheduledExecutorService, ThreadFactory, and Callable classes defined in this package. This class supports the following kinds of methods:
Methods that create and return an ExecutorService set up with commonly useful configuration settings.
Methods that create and return a ScheduledExecutorService set up with commonly useful configuration settings.
Methods that create and return a "wrapped" ExecutorService, that disables reconfiguration by making implementation-specific methods inaccessible.
Methods that create and return a ThreadFactory that sets newly created threads to a known state.
Methods that create and return a Callable out of other closure-like forms, so they can be used in execution methods requiring Callable.
Since:
1.5
Author:
Doug Lea
**/
public class Executors {}


相关文章
|
15天前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
21 0
|
5天前
|
安全 Java API
java如何请求接口然后终止某个线程
通过本文的介绍,您应该能够理解如何在Java中请求接口并根据返回结果终止某个线程。合理使用标志位或 `interrupt`方法可以确保线程的安全终止,而处理好网络请求中的各种异常情况,可以提高程序的稳定性和可靠性。
35 6
|
18天前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
14天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
14天前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
38 3
|
15天前
|
监控 Java 开发者
深入理解Java中的线程池实现原理及其性能优化####
本文旨在揭示Java中线程池的核心工作机制,通过剖析其背后的设计思想与实现细节,为读者提供一份详尽的线程池性能优化指南。不同于传统的技术教程,本文将采用一种互动式探索的方式,带领大家从理论到实践,逐步揭开线程池高效管理线程资源的奥秘。无论你是Java并发编程的初学者,还是寻求性能调优技巧的资深开发者,都能在本文中找到有价值的内容。 ####
|
20天前
|
缓存 Java 开发者
Java多线程并发编程:同步机制与实践应用
本文深入探讨Java多线程中的同步机制,分析了多线程并发带来的数据不一致等问题,详细介绍了`synchronized`关键字、`ReentrantLock`显式锁及`ReentrantReadWriteLock`读写锁的应用,结合代码示例展示了如何有效解决竞态条件,提升程序性能与稳定性。
73 6
|
18天前
|
监控 Java 数据库连接
Java线程管理:守护线程与用户线程的区分与应用
在Java多线程编程中,线程可以分为守护线程(Daemon Thread)和用户线程(User Thread)。这两种线程在行为和用途上有着明显的区别,了解它们的差异对于编写高效、稳定的并发程序至关重要。
26 2
|
18天前
|
监控 Java 开发者
Java线程管理:守护线程与本地线程的深入剖析
在Java编程语言中,线程是程序执行的最小单元,它们可以并行执行以提高程序的效率和响应性。Java提供了两种特殊的线程类型:守护线程和本地线程。本文将深入探讨这两种线程的区别,并探讨它们在实际开发中的应用。
25 1
|
20天前
|
安全 Java 开发者
Java中的多线程编程:从基础到实践
本文深入探讨了Java多线程编程的核心概念和实践技巧,旨在帮助读者理解多线程的工作原理,掌握线程的创建、管理和同步机制。通过具体示例和最佳实践,本文展示了如何在Java应用中有效地利用多线程技术,提高程序性能和响应速度。
54 1