【图论】【 割边】【C++算法】1192. 查找集群内的关键连接

简介: 【图论】【 割边】【C++算法】1192. 查找集群内的关键连接

本文涉及知识点

图论 割边

割边和割点类似,DFS(next)的返回值 如果小于等于time[cur] 则不是割边。

割点原理及封装好的割点类(预计2024年3月11号左右发布)

LeetCoce1192. 查找集群内的关键连接

力扣数据中心有 n 台服务器,分别按从 0 到 n-1 的方式进行了编号。它们之间以 服务器到服务器 的形式相互连接组成了一个内部集群,连接是无向的。用 connections 表示集群网络,connections[i] = [a, b] 表示服务器 a 和 b 之间形成连接。任何服务器都可以直接或者间接地通过网络到达任何其他服务器。

关键连接 是在该集群中的重要连接,假如我们将它移除,便会导致某些服务器无法访问其他服务器。

请你以任意顺序返回该集群内的所有 关键连接 。

示例 1:

输入:n = 4, connections = [[0,1],[1,2],[2,0],[1,3]]

输出:[[1,3]]

解释:[[3,1]] 也是正确的。

示例 2:

输入:n = 2, connections = [[0,1]]

输出:[[0,1]]

提示:

2 <= n <= 105

n - 1 <= connections.length <= 105

0 <= ai, bi <= n - 1

ai != bi

不存在重复的连接

代码

核心代码

class CNeiBo
{
public: 
  static vector<vector<int>> Two(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) 
  {
    vector<vector<int>>  vNeiBo(n);
    for (const auto& v : edges)
    {
      vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);
      if (!bDirect)
      {
        vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);
      }
    }
    return vNeiBo;
  } 
  static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)
  {
    vector<vector<std::pair<int, int>>> vNeiBo(n);
    for (const auto& v : edges)
    {
      vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);
      if (!bDirect)
      {
        vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);
      }
    }
    return vNeiBo;
  }
  static vector<vector<int>> Grid(int rCount, int cCount, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext)
  {
    vector<vector<int>> vNeiBo(rCount * cCount);
    auto Move = [&](int preR, int preC, int r, int c)
    {
      if ((r < 0) || (r >= rCount))
      {
        return;
      }
      if ((c < 0) || (c >= cCount))
      {
        return;
      }
      if (funVilidCur(preR, preC) && funVilidNext(r, c))
      {
        vNeiBo[cCount * preR + preC].emplace_back(r * cCount + c);
      }
    };
    for (int r = 0; r < rCount; r++)
    {
      for (int c = 0; c < cCount; c++)
      {
        Move(r, c, r + 1, c);
        Move(r, c, r - 1, c);
        Move(r, c, r, c + 1);
        Move(r, c, r, c - 1);
      }
    }
    return vNeiBo;
  }
};
//割点
class CCutPoint
{
public:
  CCutPoint(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size())
  {
    m_vNodeToTime.assign(m_iSize, -1);
    m_vCutNewRegion.resize(m_iSize);    
  }
  void Init(const vector<vector<int>>& vNeiB)
  {
    for (int i = 0; i < m_iSize; i++)
    {
      if (-1 == m_vNodeToTime[i])
      {
        m_vRegionFirstTime.emplace_back(m_iTime);
        dfs(vNeiB, i, -1);
      }
    }
  } 
  const int m_iSize;
  const vector<int>& Time()const { return m_vNodeToTime; }//各节点的时间戳
  const vector<int>& RegionFirstTime()const { return m_vRegionFirstTime; }//各连通区域的最小时间戳
  vector<bool> CalCut()const { 
    vector<bool> ret;
    for (int i = 0; i < m_iSize; i++)
    {
      ret.emplace_back(m_vCutNewRegion[i].size());
    }
    return ret; }//
  const vector < vector<pair<int, int>>>& NewRegion()const { return m_vCutNewRegion; };
protected:
  int dfs(const vector<vector<int>>& vNeiB, const int cur, const int parent)
  {
    int iMinTime = m_vNodeToTime[cur] = m_iTime++;
    OnBeginDFS(cur);
    int iRegionCount = (-1 != parent);//根连通区域数量
    for (const auto& next : vNeiB[cur]) {
      if (next == parent)
      {
        continue;
      }
      if (-1 != m_vNodeToTime[next]) {
        iMinTime = min(iMinTime, m_vNodeToTime[next]);
        continue;
      }
      const int childMinTime = dfs(vNeiB, next, cur);
      iMinTime = min(iMinTime, childMinTime);
      if (childMinTime >= m_vNodeToTime[cur]) {
        iRegionCount++;
        m_vCutNewRegion[cur].emplace_back(m_vNodeToTime[next], m_iTime);
      }
      OnVisitNextEnd(childMinTime,cur, next);
    }
    if (iRegionCount < 2)
    {
      m_vCutNewRegion[cur].clear();
    }
    return iMinTime;
  }
  virtual void OnVisitNextEnd(int childMinTime,int cur, int next) {};
  virtual void OnBeginDFS(int cur) {};
  vector<int> m_vNodeToTime;
  vector<int> m_vRegionFirstTime;
  vector < vector<pair<int, int>>> m_vCutNewRegion; //m_vCutNewRegion[c]如果存在[left,r) 表示割掉c后,时间戳[left,r)的节点会形成新区域
  int m_iTime = 0;
};
class CCutEdge : public CCutPoint
{
public:
  using CCutPoint::CCutPoint;
  vector<vector<int>> m_vCutEdges;
protected:
  virtual void OnVisitNextEnd(int childMinTime, int cur, int next) override {
    if (childMinTime > m_vNodeToTime[cur])
    {
      m_vCutEdges.emplace_back(vector<int>{ cur,next });
    }
  }
};
class Solution {
public:
    vector<vector<int>> criticalConnections(int n, vector<vector<int>>& connections) {
        auto neiBo = CNeiBo::Two(n, connections, false);
        CCutEdge cut(neiBo);
        cut.Init(neiBo);
        return cut.m_vCutEdges;
    }
};

测试用例

template<class T, class T2>
void Assert(const T& t1, const T2& t2)
{
  assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
  if (v1.size() != v2.size())
  {
    assert(false);
    return;
  }
  for (int i = 0; i < v1.size(); i++)
  {
    Assert(v1[i], v2[i]);
  }
}
int main()
{
    int n;
    vector<vector<int>> connections;
  
    {
        Solution sln;
        n = 2, connections = { {0,1} };
        auto res = sln.criticalConnections(n, connections);
        Assert({ { 0,1} }, res);
    }
    {
        Solution sln;
        n = 4, connections = { {0,1},{1,2},{2,0},{1,3} };
        auto res = sln.criticalConnections(n, connections);
        Assert({ { 1,3} }, res);
    }
}


扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境: VS2022 C++17

如无特殊说明,本算法用**C++**实现。

相关文章
|
6月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
6月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
158 2
|
7月前
|
存储 算法 C++
Windows共享文件:探秘C++实现的B树索引算法奇境
在数字化时代,Windows共享文件的高效管理至关重要。B树算法以其自平衡多路搜索特性,在文件索引与存储优化中表现出色。本文探讨B树在Windows共享文件中的应用,通过C++实现具体代码,展示其构建文件索引、优化数据存储的能力,提升文件检索效率。B树通过减少磁盘I/O操作,确保查询高效,为企业和个人提供流畅的文件共享体验。
|
2月前
|
机器学习/深度学习 传感器 算法
基于matlab瞬态三角哈里斯鹰算法TTHHO多无人机协同集群避障路径规划(目标函数:最低成本:路径、高度、威胁、转角)(Matlab代码实现)
基于matlab瞬态三角哈里斯鹰算法TTHHO多无人机协同集群避障路径规划(目标函数:最低成本:路径、高度、威胁、转角)(Matlab代码实现)
127 1
|
3月前
|
传感器 并行计算 算法
【无人机编队】基于非支配排序遗传算法II NSGA-II高效可行的无人机离线集群仿真研究(Matlab代码实现)
【无人机编队】基于非支配排序遗传算法II NSGA-II高效可行的无人机离线集群仿真研究(Matlab代码实现)
271 3
|
4月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
148 0
|
6月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
181 17
|
5月前
|
存储 机器学习/深度学习 算法
基于 C++ 的局域网访问控制列表(ACL)实现及局域网限制上网软件算法研究
本文探讨局域网限制上网软件中访问控制列表(ACL)的应用,分析其通过规则匹配管理网络资源访问的核心机制。基于C++实现ACL算法原型,展示其灵活性与安全性。文中强调ACL在企业与教育场景下的重要作用,并提出性能优化及结合机器学习等未来研究方向。
151 4
|
5月前
|
机器学习/深度学习 存储 算法
基于 C++ 布隆过滤器算法的局域网上网行为控制:URL 访问过滤的高效实现研究
本文探讨了一种基于布隆过滤器的局域网上网行为控制方法,旨在解决传统黑白名单机制在处理海量URL数据时存储与查询效率低的问题。通过C++实现URL访问过滤功能,实验表明该方法可将内存占用降至传统方案的八分之一,查询速度提升约40%,假阳性率可控。研究为优化企业网络管理提供了新思路,并提出结合机器学习、改进哈希函数及分布式协同等未来优化方向。
160 0
|
7月前
|
SQL 数据库连接 数据库
在C++的QT框架中实现SQLite数据库的连接与操作
以上就是在C++的QT框架中实现SQLite数据库的连接与操作的基本步骤。这些步骤包括创建数据库连接、执行SQL命令、处理查询结果和关闭数据库连接。在实际使用中,你可能需要根据具体的需求来修改这些代码。
464 14