RK3588 RGA 图像操作

简介: RK3588 RGA 图像操作

背景

公司业务需要用到RK3588 的RGA进行图像处理加速,网上搜了下,这方面的资料很少,在此记录下自己从熟悉文档到应用的整个过程,给有相关需求的小伙伴做个参考。

一、什么是RGA

RGA (Raster Graphic Acceleration Unit)是一个独立的2D硬件加速器,可用于加速点/线绘制,执行图像缩放、旋转、格式转换等常见的2D图形操作。

二、RK3588 RGA及代码示例

2.1 从git拉取官方文档及sample示例
git clone https://github.com/airockchip/librga
cd librga

其中 include 是相关头文件,libs是运行库,samples是代码示例。注意:官方demo是有默认的验证源文件,开始前先看下图对应的md文件。

2.2 图像缩放或者放大

本示例代码是在官方resize_demo的基础上进行改动、验证。说明:因为是Debian系统,安装opencv会报错,缺少libjasper库。网上搜了下比较麻烦,本人使用的先在Ubuntu先编译好的opencv库。

代码功能:使用opencv读取本地 1.jpg 图片,调用RGA resize接口进行图片缩小和放大,再使用opencv保存为新的文件。BIG宏定义是用来执行控制放大还缩操作。

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "im2d_version.h"
#include "im2d_type.h"
#include "im2d_single.h"
#include "im2d_common.h"
#include "im2d_buffer.h"
#include "RgaUtils.h"
#include "src/utils/utils.h"
#include "./opencv2/core/core.hpp"
#include "./opencv2/highgui/highgui.hpp"
using namespace std;
using namespace cv;
#define BIG
#ifdef BIG
#define RESIZE_WIDTH  1920
#define RESIZE_HEIGHT 1080
#define SCALE_NAME "./scale_1920_1080.jpg"
#else
#define RESIZE_WIDTH  640
#define RESIZE_HEIGHT 480
#define SCALE_NAME "./zoom_640_480.jpg"
#endif
int main(int argc, char **argv)
{
    clock_t t1, t2;
    t1 = clock();
    int ret = 0;
    int src_width, src_height, src_format;
    int dst_width, dst_height, dst_format;
    char *src_buf, *dst_buf;
    int src_buf_size, dst_buf_size;
    rga_buffer_t src_img, dst_img;
    rga_buffer_handle_t src_handle, dst_handle;
    memset(&src_img, 0, sizeof(src_img));
    memset(&dst_img, 0, sizeof(dst_img));
    Mat image, res;
  image = imread("./1.jpg");
  if (image.data == nullptr)                     
  {
    cout << "图片文件不存在" << endl;
  }
    cout << "图像宽为:" << image.cols << "\t高度为:" << image.rows << "\t通道数为:" << image.channels() << endl;
    src_width = image.cols;
    src_height = image.rows;
    src_format = RK_FORMAT_BGR_888;
    // src_format = RK_FORMAT_RGBA_8888; // RK_FORMAT_YCbCr_420_SP
    dst_width = RESIZE_WIDTH;
    dst_height = RESIZE_HEIGHT;
    dst_format = RK_FORMAT_BGR_888;
    src_buf_size = src_width * src_height * get_bpp_from_format(src_format);
    dst_buf_size = dst_width * dst_height * get_bpp_from_format(dst_format);
    cout << " src format: " << get_bpp_from_format(src_format) << endl;
    cout << " dst format: " << get_bpp_from_format(dst_format) << endl;
    src_buf = (char *)malloc(src_buf_size);
    dst_buf = (char *)malloc(dst_buf_size);
    memcpy(src_buf, image.data, src_width * src_height * get_bpp_from_format(src_format));
    memset(dst_buf, 0x80, dst_buf_size);
    src_handle = importbuffer_virtualaddr(src_buf, src_buf_size);
    dst_handle = importbuffer_virtualaddr(dst_buf, dst_buf_size);
    if (src_handle == 0 || dst_handle == 0) {
        printf("importbuffer failed!\n");
        // goto release_buffer;
        return -1;
    }
    src_img = wrapbuffer_handle(src_handle, src_width, src_height, src_format);
    dst_img = wrapbuffer_handle(dst_handle, dst_width, dst_height, dst_format);
    ret = imcheck(src_img, dst_img, {}, {});
    if (IM_STATUS_NOERROR != ret) {
        printf("%d, check error! %s", __LINE__, imStrError((IM_STATUS)ret));
        return -1;
    }
    printf("%d, check success \n", __LINE__);
    ret = imresize(src_img, dst_img);
    if (ret == IM_STATUS_SUCCESS) {
        printf("imresize running success!\n");
    } else {
        printf("running failed, %s\n", imStrError((IM_STATUS)ret));
        // goto release_buffer;
        return -1;
    }
    t2 = clock();
    double time_use = (double)(t2 - t1) / CLOCKS_PER_SEC; // 微秒
    printf("vptdt_init  time_use is [%f] s\n", time_use);
    res.create(RESIZE_HEIGHT, RESIZE_WIDTH, CV_8UC3);
    memcpy(res.data, dst_buf, RESIZE_HEIGHT*RESIZE_WIDTH*3);
    cv::imwrite(SCALE_NAME, res);
    printf("save picture: [ %s ] success\n", SCALE_NAME);
release_buffer:
    if (src_handle)
        releasebuffer_handle(src_handle);
    if (dst_handle)
        releasebuffer_handle(dst_handle);
    if (src_buf)
        free(src_buf);
    if (dst_buf)
        free(dst_buf);
    return ret;
    return 0;
}
2.2 图像格式转换

本示例代码是在官方cvtcolor_demo的基础上进行改动、验证。

代码功能:

  1. 打开宏定义BGR2NV12 ,使用opencv读取本地1.jpg图片,调用RGA imcvtcolor 接口实现BGR到YUV的转换;
  2. 关闭宏定义BGR2NV12,读取YUV文件,调用RGA imcvtcolor 接口实现YUV到BGR的转换;
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "im2d_version.h"
#include "im2d_type.h"
#include "im2d_single.h"
#include "im2d_common.h"
#include "im2d_buffer.h"
#include "RgaUtils.h"
#include "src/utils/utils.h"
#include "./opencv2/core/core.hpp"
#include "./opencv2/highgui/highgui.hpp"
#include "./opencv4/opencv2/opencv.hpp"
using namespace std;
using namespace cv;
#define TRANSFER_FILE "./transfer.YUV"
#define RGA_WRITE_FILE "./rga_res.jpg"
#define OPENCV_WRITE_FILE "./opecv_res.jpg"
#define BGR2NV12
// #define OPENCV_TRANSFER
int main(int argc, char **argv)
{
    int ret = 0;
    int src_width, src_height, src_format;
    int dst_width, dst_height, dst_format;
    char *src_buf, *dst_buf;
    int src_buf_size, dst_buf_size;
    rga_buffer_t src_img, dst_img;
    rga_buffer_handle_t src_handle, dst_handle;
    memset(&src_img, 0, sizeof(src_img));
    memset(&dst_img, 0, sizeof(dst_img));
#ifdef BGR2NV12
    clock_t t1, t2;
    t1 = clock();
    Mat image, res;
    image = imread("./1.jpg");
    if (image.data == nullptr)
    {
        cout << "图片文件不存在" << endl;
    }
    cout << "图像宽为:" << image.cols << "\t高度为:" << image.rows << "\t通道数为:" << image.channels() << endl;
    src_width = image.cols;
    src_height = image.rows;
    src_format = RK_FORMAT_BGR_888;
    dst_width = image.cols;
    dst_height = image.rows;
    dst_format = RK_FORMAT_YCbCr_420_SP; // NV12
    cout << " src format: " << get_bpp_from_format(src_format) << endl;
    cout << " dst format: " << get_bpp_from_format(dst_format) << endl;
    src_buf_size = src_width * src_height * get_bpp_from_format(src_format);
    dst_buf_size = dst_width * dst_height * get_bpp_from_format(dst_format);
    src_buf = (char *)malloc(src_buf_size);
    dst_buf = (char *)malloc(dst_buf_size);
    memcpy(src_buf, image.data, src_width * src_height * get_bpp_from_format(src_format));
    memset(dst_buf, 0x80, dst_buf_size);
    src_handle = importbuffer_virtualaddr(src_buf, src_buf_size);
    dst_handle = importbuffer_virtualaddr(dst_buf, dst_buf_size);
    if (src_handle == 0 || dst_handle == 0)
    {
        printf("importbuffer failed!\n");
        if (src_handle)
            releasebuffer_handle(src_handle);
        if (dst_handle)
            releasebuffer_handle(dst_handle);
        if (src_buf)
            free(src_buf);
        if (dst_buf)
            free(dst_buf);
        return ret;
    }
    src_img = wrapbuffer_handle(src_handle, src_width, src_height, src_format);
    dst_img = wrapbuffer_handle(dst_handle, dst_width, dst_height, dst_format);
    ret = imcheck(src_img, dst_img, {}, {});
    if (IM_STATUS_NOERROR != ret)
    {
        printf("%d, check error! %s", __LINE__, imStrError((IM_STATUS)ret));
        return -1;
    }
    // ret = imcvtcolor(src_img, dst_img, src_format, dst_format, IM_RGB_TO_YUV_BT709_LIMIT);
    ret = imcvtcolor(src_img, dst_img, src_format, dst_format, IM_RGB_TO_YUV_BT709_LIMIT);
    if (ret == IM_STATUS_SUCCESS)
    {
        printf("imcvtcolor running success!\n");
    }
    else
    {
        printf("imcvtcolo rrunning failed, %s\n", imStrError((IM_STATUS)ret));
        if (src_handle)
            releasebuffer_handle(src_handle);
        if (dst_handle)
            releasebuffer_handle(dst_handle);
        if (src_buf)
            free(src_buf);
        if (dst_buf)
            free(dst_buf);
        return ret;
    }
    t2 = clock();
    double time_use = (double)(t2 - t1) / CLOCKS_PER_SEC; // 微秒
    printf("imcvtcolo to YUV time_use is [%f] s\n", time_use);
    FILE *file = fopen(TRANSFER_FILE, "wb+");
    if (!file)
    {
        fprintf(stderr, "Could not open %s\n", TRANSFER_FILE);
        return false;
    }
    else
    {
        fprintf(stderr, "open %s and write ok\n", TRANSFER_FILE);
    }
    fwrite(dst_buf, image.cols * image.rows * get_bpp_from_format(dst_format), 1, file);
    fclose(file);
#else
    src_width = 1920;
    src_height = 1080;
    src_format = RK_FORMAT_YCbCr_420_SP; // NV12
#ifdef OPENCV_TRANSFER
    cout << " src format: " << get_bpp_from_format(src_format) << endl;
    src_buf_size = src_width * src_height * get_bpp_from_format(src_format);
    src_buf = (char *)malloc(src_buf_size);
    FILE *file = fopen(TRANSFER_FILE, "rb");
    if (!file)
    {
        fprintf(stderr, "Could not open %s\n", TRANSFER_FILE);
        return -EINVAL;
    }
    fread(src_buf, src_width * src_height * get_bpp_from_format(src_format), 1, file);
    fclose(file);
    cv::Mat yuvNV12, rgb24;
    yuvNV12.create(src_height * 3 / 2, src_width, CV_8UC1);
    memcpy(yuvNV12.data, src_buf, src_width*src_height * 3 / 2);
    // trans to rgb24
    cv::cvtColor(yuvNV12, rgb24, cv::COLOR_YUV2BGR_NV12);
    cv::imwrite(OPENCV_WRITE_FILE, rgb24);
    printf("[OPENCV] save picture: [ %s ] success\n", OPENCV_WRITE_FILE);
    free(src_buf);
    src_buf = NULL;
#else
    clock_t t1, t2;
    t1 = clock();
    dst_width = 1920;
    dst_height = 1080;
    dst_format = RK_FORMAT_BGR_888;
    cout << "src format: " << get_bpp_from_format(src_format) << endl;
    cout << "dst format: " << get_bpp_from_format(dst_format) << endl;
    src_buf_size = src_width * src_height * get_bpp_from_format(src_format);
    dst_buf_size = dst_width * dst_height * get_bpp_from_format(dst_format);
    src_buf = (char *)malloc(src_buf_size);
    dst_buf = (char *)malloc(dst_buf_size);
    FILE *file = fopen(TRANSFER_FILE, "rb");
    if (!file)
    {
        fprintf(stderr, "Could not open %s\n", TRANSFER_FILE);
        return -EINVAL;
    }
    fread(src_buf, src_width * src_height * get_bpp_from_format(src_format), 1, file);
    fclose(file);
    printf("read src file success!\n");
    memset(dst_buf, 0x80, dst_buf_size);
    src_handle = importbuffer_virtualaddr(src_buf, src_buf_size);
    dst_handle = importbuffer_virtualaddr(dst_buf, dst_buf_size);
    if (src_handle == 0 || dst_handle == 0)
    {
        printf("importbuffer failed!\n");
        if (src_handle)
            releasebuffer_handle(src_handle);
        if (dst_handle)
            releasebuffer_handle(dst_handle);
        if (src_buf)
            free(src_buf);
        if (dst_buf)
            free(dst_buf);
        return ret;
    }
    src_img = wrapbuffer_handle(src_handle, src_width, src_height, src_format);
    dst_img = wrapbuffer_handle(dst_handle, dst_width, dst_height, dst_format);
    ret = imcheck(src_img, dst_img, {}, {});
    if (IM_STATUS_NOERROR != ret)
    {
        printf("%d, check error! %s", __LINE__, imStrError((IM_STATUS)ret));
        return -1;
    }
    ret = imcvtcolor(src_img, dst_img, src_format, dst_format, IM_YUV_TO_RGB_BT709_LIMIT);
    if (ret == IM_STATUS_SUCCESS)
    {
        printf("imcvtcolor running success!\n");
    }
    else
    {
        printf("imcvtcolo rrunning failed, %s\n", imStrError((IM_STATUS)ret));
        if (src_handle)
            releasebuffer_handle(src_handle);
        if (dst_handle)
            releasebuffer_handle(dst_handle);
        if (src_buf)
            free(src_buf);
        if (dst_buf)
            free(dst_buf);
        return ret;
    }
    t2 = clock();
    double time_use = (double)(t2 - t1) / CLOCKS_PER_SEC; // 微秒
    printf("imcvtcolo YUV to BGR time_use is [%f] s\n", time_use);
    Mat rgb24;
    rgb24.create(src_height, src_width, CV_8UC3);
    memcpy(rgb24.data, dst_buf, dst_width*dst_height*3);
    cv::imwrite(RGA_WRITE_FILE, rgb24);
    printf("[RGA] save picture: [ %s ] success\n", RGA_WRITE_FILE);
#endif // OPENCV_TRANSFER
#endif
    return 0;
}
相关文章
|
3月前
|
分布式计算 监控 大数据
如何处理 Spark 中的倾斜数据?
【8月更文挑战第13天】
250 4
|
6月前
|
存储 分布式计算 Scala
bigdata-36-Spark转换算子与动作算子
bigdata-36-Spark转换算子与动作算子
47 0
|
存储 分布式计算 Spark
SPARK中关于HighlyCompressedMapStatus的说明(会造成运行时的数据不精确)
SPARK中关于HighlyCompressedMapStatus的说明(会造成运行时的数据不精确)
131 0
|
分布式计算 Ubuntu Java
基于Spark的应用水印技术和流数据去重
基于Spark的应用水印技术和流数据去重
|
机器学习/深度学习 分布式计算 算法
spark ml特征转换操作StringIndexer、IndexToString、VectorIndexer、oneHotEncoder、Bucketizer、QuantileDiscretizer
spark ml特征转换操作StringIndexer、IndexToString、VectorIndexer、oneHotEncoder、Bucketizer、QuantileDiscretizer
264 0
spark ml特征转换操作StringIndexer、IndexToString、VectorIndexer、oneHotEncoder、Bucketizer、QuantileDiscretizer
|
大数据 数据管理 数据挖掘
使用Arcpy进行数据批处理-批量裁剪
使用Arcpy进行数据批处理-批量裁剪
|
分布式计算 API 图计算
【Spark】(九)Spark GraphX 图计算解析2
【Spark】(九)Spark GraphX 图计算解析2
155 0
【Spark】(九)Spark GraphX 图计算解析2
|
分布式计算 算法 大数据
【Spark】(九)Spark GraphX 图计算解析1
【Spark】(九)Spark GraphX 图计算解析1
700 0
【Spark】(九)Spark GraphX 图计算解析1
|
分布式计算 大数据 数据库
Spark 算子操作剖析 3
快速学习 Spark 算子操作剖析 3
106 0
Spark 算子操作剖析 3
Dataset之图片数据增强:设计自动生成(高级封装之命令行解析实现)汽车车牌图片算法(cv2+PIL+argparse)根据随机指定七个字符自动生成逼真车牌图片数据集(带各种噪声效果)
Dataset之图片数据增强:设计自动生成(高级封装之命令行解析实现)汽车车牌图片算法(cv2+PIL+argparse)根据随机指定七个字符自动生成逼真车牌图片数据集(带各种噪声效果)
Dataset之图片数据增强:设计自动生成(高级封装之命令行解析实现)汽车车牌图片算法(cv2+PIL+argparse)根据随机指定七个字符自动生成逼真车牌图片数据集(带各种噪声效果)