认识一下Redis的内存溢出策略

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 认识一下Redis的内存溢出策略

在使用Redis时,在分配内存时通常会遇到两个很重要的问题,那就是如何给当前Redis分配最大的内存?如何进行内存溢出的控制手段。


今天就来学习一下这两个问题如何解决吧。


如何给当前Redis分配最大的内存


当我们想要根据目前实际情况来分配最大的内存时,就需要先获取当前的最大内存,以此来做个比较,然后再进行配置一个新的最大内存,这才合理。


如何获取当前最大内存?


config get maxmemory;,这个命令,可以获取到当前的最大内存。


如何设置最大内存?


config set maxmemory 1GB;,通过此命令,可以设置Redis的最大内存。


如何进行内存溢出的控制手段?


当Redis所占用的内存,超出设置的最大内存时,我们该当如何处理呢,这个情况Redis也提供了相应的内存溢出策略。来看一下吧。


Redis内存溢出策略?


  1. noeviction(默认策略):拒绝所有写入操作并返回客户端以错误信息(error),报错信息如下:OOM command not allowed when used memory,此项策略只响应读操作。一般不推荐使用,太影响用户体验。


  1. volatile-lru:根据 LRU 算法删除设置了超时属性(expire)的键,直到腾出足够空间为止。如果当前Redis中并没有可删除的键对象,则不再执行该策略,回退到 noeviction 策略。推荐使用,此种策略在各方面比较友好,但是前提需要你对部分键设置了超时时间。


  1. allkeys-lru:根据 LRU 算法针对Redis中的键进行删除,不管Redis数据有没有设置超时属性,一律按照LRU逻辑清理,直到腾出足够空间为止。推荐使用


  1. allkeys-random:随机删除所有键,直到腾出足够空间为止。较推荐使用


  1. volatile-random:随机删除过期键,直到腾出足够空间为止。较推荐使用


  1. volatile-tth:根据键值对象的 ttl 属性,删除最近将要过期数据。如果没有,回退到 noeviction 策略。不太推荐使用


相关文章
|
运维 NoSQL 测试技术
Redis:内存陡增100%深度复盘
本文深度分析了Redis内存陡增100%的一些细节和解决方案。
237 1
Redis:内存陡增100%深度复盘
|
6月前
|
存储 分布式计算 监控
阿里云服务器实例经济型e、通用算力型u1、计算型c8i、通用型g8i、内存型r8i详解与选择策略
在阿里云现在的活动中,可选的云服务器实例规格主要有经济型e、通用算力型u1、计算型c8i、通用型g8i、内存型r8i实例,虽然阿里云在活动中提供了多种不同规格的云服务器实例,以满足不同用户和应用场景的需求。但是有的用户并不清楚他们的性能如何,应该如何选择。本文将详细介绍阿里云服务器中的经济型e、通用算力型u1、计算型c8i、通用型g8i、内存型r8i实例的性能、适用场景及选择参考,帮助用户根据自身需求做出更加精准的选择。
|
2月前
|
存储 人工智能 自然语言处理
AI代理内存消耗过大?9种优化策略对比分析
在AI代理系统中,多代理协作虽能提升整体准确性,但真正决定性能的关键因素之一是**内存管理**。随着对话深度和长度的增加,内存消耗呈指数级增长,主要源于历史上下文、工具调用记录、数据库查询结果等组件的持续积累。本文深入探讨了从基础到高级的九种内存优化技术,涵盖顺序存储、滑动窗口、摘要型内存、基于检索的系统、内存增强变换器、分层优化、图形化记忆网络、压缩整合策略以及类操作系统内存管理。通过统一框架下的代码实现与性能评估,分析了每种技术的适用场景与局限性,为构建高效、可扩展的AI代理系统提供了系统性的优化路径和技术参考。
154 4
AI代理内存消耗过大?9种优化策略对比分析
|
1月前
|
机器学习/深度学习 监控 安全
解密虚拟化弹性内存:五大核心技术与实施策略
本文深入解析虚拟化环境中实现内存弹性管理的五大核心技术与实施策略。内容涵盖内存架构演进、关键技术原理、性能优化方法及典型问题解决方案,助力提升虚拟机密度与资源利用率。
103 0
|
1月前
|
边缘计算 算法 Java
Java 绿色计算与性能优化:从内存管理到能耗降低的全方位优化策略与实践技巧
本文探讨了Java绿色计算与性能优化的技术方案和应用实例。文章从JVM调优(包括垃圾回收器选择、内存管理和并发优化)、代码优化(数据结构选择、对象创建和I/O操作优化)等方面提出优化策略,并结合电商平台、社交平台和智能工厂的实际案例,展示了通过Java新特性提升性能、降低能耗的显著效果。最终指出,综合运用这些优化方法不仅能提高系统性能,还能实现绿色计算目标,为企业节省成本并符合环保要求。
79 0
|
3月前
|
存储 监控 NoSQL
流量洪峰应对术:Redis持久化策略与内存压测避坑指南
本文深入解析Redis持久化策略与内存优化技巧,涵盖RDB快照机制、AOF重写原理及混合持久化实践。通过实测数据揭示bgsave内存翻倍风险、Hash结构内存节省方案,并提供高并发场景下的主从复制冲突解决策略。结合压测工具链构建与故障恢复演练,总结出生产环境最佳实践清单。
112 9
|
弹性计算 安全 数据库
【转】云服务器虚拟化内存优化指南:提升性能的7个关键策略
作为云计算服务核心组件,虚拟化内存管理直接影响业务系统性能表现。本文详解了内存优化方案与技术实践,助您降低30%资源浪费。
81 0
【转】云服务器虚拟化内存优化指南:提升性能的7个关键策略
|
5月前
|
存储 NoSQL Redis
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 +  无锁架构 +  EDA架构  + 异步日志 + 集群架构
|
6月前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供 8 种数据淘汰策略: 淘汰易失数据(具有过期时间的数据) 1. volatile-lru(least recently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰 2. volatile-lfu(least frequently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰 3. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰 4. volatile-random:从已设置过期
|
6月前
|
NoSQL Redis
Redis的数据持久化策略有哪些 ?
Redis 提供了两种方式,实现数据的持久化到硬盘。 1. RDB 持久化(全量),是指在指定的时间间隔内将内存中的数据集快照写入磁盘。 2. AOF持久化(增量),以日志的形式记录服务器所处理的每一个写、删除操作 RDB和AOF一起使用, 在Redis4.0版本支持混合持久化方式 ( 设置 aof-use-rdb-preamble yes )