函数-lambda表达式
01 定义lambda表达式
lambda表达式,又称匿名函数,常用来表示内部仅包含 1 行表达式的函数。如果一个函数的函数体仅有 1 行表达式,则该函数就可以用 lambda 表达式来代替。
lambda 表达式的语法格式如下:
func = lambda [arg1[, arg2, ... argN]] : expression
定义 lambda 表达式,必须使用 lambda 关键字;[arg1[, arg2, … argN]] 作为可选参数,等同于定义函数时要指定的参数列表。expression表示一行表达式,其运算的结果就是函数的返回值。func是一个变量,引用lambda定义的函数对象。
该语法格式转换成普通函数的形式,如下所示:
def func([arg1[, arg2, ... argN]]): return expression
显然,使用普通方法定义此函数,需要 3 行代码,而使用 lambda 表达式仅需 1 行。
例如,如果设计一个求 2 个数之和的函数,使用普通函数的方式,定义如下:
def add(x, y): return x+ y print(add(3,4)) # 打印 7
上面程序中,add() 函数内部仅有 1 行表达式,因此该函数可以直接用 lambda 表达式表示:
add = lambda x,y:x+y print(add(3,4)) # 打印 7
02 lambda表达式与def函数区别
- lambda 和def的基本用法差不多,参数都是可选,也都会定义函数对象。不同之处如下:
- lambda可以定义一个匿名函数,而def定义的函数必须有一个名字。这应该是lambda与def两者最大的区别。
- lambda是一个表达式,而不是一个语句。因此,lambda能够出现在Python语法不允许def出现的地方。例如,在一个列表常量中,或者函数调用的参数中。
- lambda的主体是一个单个的表达式,而不是一个代码块。lambda包含的代码相当于def中return子句后的代码一样。只能是简单的表达式,所以说lambda的能力小于def,在lambda中只能使用简单的语法,不能使用if else while return等语句。
- 设计理念也不同:lambda是一个为编写简单的函数而设计的,而def用来处理复杂的任务。
相比def函数,lamba 表达式具有以下 2 个优势:
- 对于单行函数,使用 lambda 表达式可以省去定义函数的过程,让代码更加简洁。
- 对于不需要多次复用的函数,使用 lambda 表达式可以在用完之后立即释放,提高程序执行的性能。
为什么要使用lambda?
- lambda函数主要用来写一些小体量的一次性函数,避免污染环境,同时也能简化代码。
- lambda起到了一种函数速写的作用,允许在使用的代码内嵌入一个函数的定义。如果仅需要嵌入一小段可执行代码的情况下,使用lambda表达式会带来一个更简洁的代码结构。
03 应用
filter()
对于序列中的元素进行筛选,最终获取符合条件的序列。
#示例1 l = list(filter(lambda x:True if x % 3 == 0 else False, range(100))) print(l) ''' 输出结果: [0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99] '''
如上所示,使用lambda表达式定义了一个匿名函数,用于筛选100以内的3的倍数,并生成一个列表。使用def函数表示如下:
#示例2 def f(x): if x % 3 == 0 : return True else: return False l = list( filter(f, range(100) )) print(l)
filter()简单的理解为过滤器,它需要两个参数,function和一个序列(字符串、列表、元组都是序列),过滤器会依次将序列的值传入function中,如果返回True的话,将其重新生成一个列表返回。
map()
map()能够遍历序列,对序列中每个元素进行操作,最终获取新的序列。
#示例3 li = [11, 22, 33] sl = [1, 2, 3] new_list = map(lambda a, b: a + b, li, sl) print(list(new_list)) # 输出结果为: [12,24,36]
map()表示映射,filter()表示过滤,map()用法与filter()类似,也是将序列放入函数进行运算,但是,不论运算结果是什么,map()都将逐一反馈,这是map()和filter()的主要区别。注意,filter()和map()中的function都必要有一个返回值。
#示例4 l = list(map(lambda x:True if x % 3 == 0 else False, range(100))) print(l) ''' 输出结果为: [True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True] '''
reduce()
对于序列内所有元素进行累计操作。
#示例5 from functools import reduce li = [11,22,33] result = reduce(lambda a,b:a+b,li) # reduce的第一个参数,函数必须要有两个参数 # reduce的第二个参数,要循环的序列 # reduce的第三个参数,初始值 print(result) ''' 输出结果: 66 '''
用lambda表达式求n的阶乘。
#示例6 from functools import reduce n = 5 print( reduce(lambda x,y:x*y,range(1,n+1)) ) ''' 输出结果: 120 '''
嵌套函数
#示例7 def f(a): return lambda b : a + b a = f(10) print( a(20)) # 30
lambda也可以嵌套在一个函数内使用,在上面示例中函数中嵌套了一个lambda表达式。变量a引用的就是lambda表达式定义的函数对象。
#示例8 #上面示例可以使用两个lambda表示: x = lambda a: lambda b: a+b y= x(10) print(y(20)) # 30
sort()
#示例9 # 根据每个元祖的第一个元素进行排序 a = [(1, 2), (4, 1), (9, 10), (13, -3)] a.sort(key=lambda x: x[1]) print(a)
04 总结
- lambda只是一个表达式,函数体比def简单很多。
- lambda的主体是一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑运算。
- lambda函数拥有自己的名字空间,且不能访问自有参数列表之外或全局名字空间里的参数。
- 简单单行代码或者一次性的函数可以用lambda函数来写,可以让代码更简洁。
- 对于复杂函数或者函数体体量大的函数,最好不要用lambda,会增加代码的阅读难度,使代码晦涩难懂。
- 在非多次调用的函数的情况下,lambda表达式即用既得,提高性能。