嵌入式开发中自定义协议的解析与组包

简介: 嵌入式开发中自定义协议的解析与组包

在嵌入式产品开发中,经常会遇到两个设备之间的通信、设备与服务器的通信、设备和上位机的通信等,很多时候通信协议都是自定义的,所以就涉及到自定义协议的解析和组包问题。

比如针对下面的这样一个协议:

帧头1 帧头2 字段1 字段2 校验
固定值:0x55 固定值:0xAA 设备ID 电压值 前面所有数据异或值
char char short float char
1字节 1字节 2字节 4字节 1字节

数据在发送时涉及到一个大小端的概念,大小端是针对多字节数据的传输,比如上述协议中字段1,假设两字节内容为0x0001,先发送0x01后发送0x00,称为小端模式;先发送0x00后发送0x01,称为大端模式。

假设字段1内容为0x001,字段2内容为0x40533333 (对应为3.3)

假设按照小端方式发送,下面是帧数据:

55 AA 01 00 33 33 53 40 ED

下面来看看如何解析,

若干年前,在第一次面对这种问题时,用的如下傻瓜式的代码方式实现:

#include <stdio.h>
int main()
{
    unsigned char Rxbuf[9] = {0x55,0xAA,0x01,0x00,0x33,0x33,0x53,0x40,0xED};
    short DeviceId;
    float Voltage;
    unsigned char check = 0;
    int i;
    for(i=0;i<8;i++)
    {
        check ^= Rxbuf[i];
    }
    if(Rxbuf[0]==0x55 && Rxbuf[1]==0xAA && Rxbuf[8]==check )
    {
        DeviceId=(Rxbuf[3]<<8)|Rxbuf[2];
        Voltage= *((float *)&Rxbuf[4]);
        printf("DeviceId:%d\n",DeviceId);
        printf("Voltage:%f\n",Voltage);
    }
    return 0;
}

简单来说就是硬来,按照数组的先后顺序逐个重组解析,如果协议比较长,代码里会充斥着很多的数组下标,一不小心就数错了。而且如果更改协议的话,代码要改动很多地方。

后来有人告诉我可以定义个结构体,然后使用memcpy函数直接复制过去就完事了,

#include <stdio.h>
#include <string.h>
#pragma pack(1)
struct RxFrame
{
    unsigned char header1;   
    unsigned char header2;   
    short deviceId;  
    float voltage;    
    unsigned char check;
};
int main()
{
    unsigned char Rxbuf[9] = {0x55,0xAA,0x01,0x00,0x33,0x33,0x53,0x40,0xED};
    struct RxFrame RxData;
    unsigned char check = 0;
    int i;
    for(i=0;i<8;i++)
    {
        check ^= Rxbuf[i];
    }
    memcpy(&RxData,Rxbuf,sizeof(Rxbuf));
    if(Rxbuf[0]==0x55 && Rxbuf[1]==0xAA && RxData.check==check )
    {
        printf("DeviceId:%d\n",RxData.deviceId);
        printf("Voltage:%f\n",RxData.voltage);
    }
    return 0;
}

嗯,的确是方便了很多。不过该方式仅适合小端传输方式。

再后来,又见到有人用如下代码实现,

#include <stdio.h>
#include "convert.h"
int main()
{
    unsigned char Rxbuf[9] = {0x55,0xAA,0x01,0x00,0x33,0x33,0x53,0x40,0xED};
    short DeviceId;
    float Voltage;
    unsigned char check = 0;
    int i;
    int index = 0;
    for(i=0;i<8;i++)
    {
        check ^= Rxbuf[i];
    }
    if(Rxbuf[0]==0x55 && Rxbuf[1]==0xAA && Rxbuf[8]==check )
    {
        index += 2;
        ByteToShort(Rxbuf, &index, &DeviceId);
        ByteToFloat(Rxbuf, &index, &Voltage);
        printf("DeviceId:%d\n",DeviceId);
        printf("Voltage:%f\n",Voltage);
    }
    return 0;
}

其中convert.h如下:

#ifndef CONVERT_H
#define CONVERT_H
void  ShortToByte(unsigned char* dest, int* index, short value);
void  FloatToByte(char* dest, int* index, float value);
#endif // CONVERT_H

convert.c如下:

#include "convert.h"
#include <string.h>
#include <stdbool.h>
static bool Endianflag = 0;
void ByteToShort(const unsigned char* source, int* index, short* result)
{
    int i, len = sizeof(short);
    char p[len];
    memset(p, 0, len);
    if(Endianflag == 1 )
    {
        for( i = 0; i < len; i++ )
            *(p+i) = *(source + *index + len - i - 1);
    }
    else
    {
        for( i = 0; i < len; i++ )
            *(p+i) = *(source + *index + i);
    }
    *result = *((short*)p);
    *index += len;
}
void ByteToFloat(unsigned char* source, int* index, float* result)
{
    int i, len = sizeof(float);
    char p[len];
    memset(p, 0, len);
    if(Endianflag == 1 )
    {
        for( i = 0; i < len; i++ )
            *(p+i) = *(source + *index + len - i - 1);
    }
    else
    {
        for( i = 0; i < len; i++ )
            *(p+i) = *(source + *index + i);
    }
    *result = *((float*)p);
    *index += len;
}

该方法既可以支持小端模式,也可以支持大端模式,使用起来也是比较方便。

除了上述2个函数,完整的转换包含以下函数,就是将Bytes转换为不同的数据类型,以及将不同的数据类型转换为Bytes。

#ifndef CONVERT_H
#define CONVERT_H
void  ByteToShort(const unsigned char* source, int* index, short* result);
void  ByteToInt(unsigned char* source, int* index, int* result);
void  ByteToLong(char* source, int* index, long long* result);
void  ByteToFloat(unsigned char* source, int* index, float* result);
void  ByteToDouble(unsigned char* source, int* index, double* result);
void  ByteToString(unsigned char* source, int* index, char* result, int length);
void  ShortToByte(unsigned char* dest, int* index, short value);
void  IntToByte(char* dest, int* index, int value);
void  LongToByte(char* dest, int* index, long long value);
void  FloatToByte(char* dest, int* index, float value);
void  DoubleToByte(unsigned char* dest, int* index, double value);
void  StringToByte(char* dest, int* index, int length, char* value);
#endif // CONVERT_H

组包的过程和解析的过程正好相反,这里不再赘述。你在开发中遇到这种问题,是如何处理的呢?欢迎留言讨论

相关文章
|
2天前
|
缓存 安全 PHP
【PHP开发专栏】Symfony框架核心组件解析
【4月更文挑战第30天】本文介绍了Symfony框架,一个模块化且高性能的PHP框架,以其可扩展性和灵活性备受开发者青睐。文章分为三部分,首先概述了Symfony的历史、特点和版本。接着,详细解析了HttpFoundation(处理HTTP请求和响应)、Routing(映射HTTP请求到控制器)、DependencyInjection(管理依赖关系)、EventDispatcher(实现事件驱动编程)以及Security(处理安全和认证)等核心组件。
|
22小时前
|
Android开发
Flutter完整开发实战详解(六、 深入Widget原理),2024百度Android岗面试真题收录解析
Flutter完整开发实战详解(六、 深入Widget原理),2024百度Android岗面试真题收录解析
|
2天前
|
存储 网络协议 Java
【JavaEE】数据链路层-以太网协议-DNS
【JavaEE】数据链路层-以太网协议-DNS
9 1
|
2天前
|
人工智能 IDE Devops
通义灵码技术解析,打造 AI 原生开发新范式
本文第一部分先介绍 AIGC 对软件研发的根本性影响,从宏观上介绍当下的趋势;第二部分将介绍 Copilot 模式,第三部分是未来软件研发 Agent 产品的进展。
|
2天前
|
Linux 开发工具 Android开发
移动应用与系统:开发与操作系统的深度解析
【5月更文挑战第6天】 在数字化时代,移动应用和操作系统是信息技术的核心组成部分。本文深入探讨了移动应用的开发过程、关键技术以及移动操作系统的架构和功能。通过对这些技术的详细分析,我们可以更好地理解移动应用和系统的工作原理,以及它们如何影响我们的生活和工作。
|
2天前
|
Dart 前端开发 开发者
【Flutter前端技术开发专栏】Flutter Dart语言基础语法解析
【4月更文挑战第30天】Dart是Google为Flutter框架打造的高效编程语言,具有易学性、接口、混入、抽象类等特性。本文概述了Dart的基础语法,包括静态类型(如int、String)、控制流程(条件、循环)、函数、面向对象(类与对象)和异常处理。此外,还介绍了库导入与模块使用,帮助开发者快速入门Flutter开发。通过学习Dart,开发者能创建高性能的应用。
【Flutter前端技术开发专栏】Flutter Dart语言基础语法解析
|
2天前
|
JSON 安全 Swift
【Swift开发专栏】Swift中的JSON解析与处理
【4月更文挑战第30天】本文介绍了Swift中的JSON解析与处理。首先,讲解了JSON的基础,包括其键值对格式和在Swift中的解析与序列化方法。接着,展示了如何使用`Codable`协议简化JSON操作,以及处理复杂结构的示例。通过这些内容,读者能掌握在Swift中高效地处理JSON数据的方法。
|
2天前
|
存储 数据库连接 PHP
【PHP开发专栏】深入解析PHP数据类型与运算符
【4月更文挑战第30天】本文深入探讨了PHP的编程基础——数据类型和运算符。PHP支持整型、浮点型、字符串、布尔型、数组、对象、资源等数据类型。运算符包括算术、字符串、赋值、比较、逻辑、位、错误控制及范围运算符。通过示例展示了如何计算圆面积、判断素数和求斐波那契数列,以帮助读者更好地理解和应用这些概念。
|
2天前
|
设计模式 算法 搜索推荐
【PHP开发专栏】PHP设计模式解析与实践
【4月更文挑战第29天】本文介绍了设计模式在PHP开发中的应用,包括创建型(如单例、工厂模式)、结构型和行为型模式(如观察者、策略模式)。通过示例展示了如何在PHP中实现这些模式,强调了它们在提升代码可维护性和可扩展性方面的作用。设计模式是解决常见问题的最佳实践,但在使用时需避免过度设计,根据实际需求选择合适的设计模式。
|
2天前
|
运维 网络协议 安全
Serverless 应用引擎产品使用之阿里云函数计算中添加自定义域名进行域名DNS验证如何解决
阿里云Serverless 应用引擎(SAE)提供了完整的微服务应用生命周期管理能力,包括应用部署、服务治理、开发运维、资源管理等功能,并通过扩展功能支持多环境管理、API Gateway、事件驱动等高级应用场景,帮助企业快速构建、部署、运维和扩展微服务架构,实现Serverless化的应用部署与运维模式。以下是对SAE产品使用合集的概述,包括应用管理、服务治理、开发运维、资源管理等方面。
25 1

推荐镜像

更多