查找-多路查找详解篇2

简介: 查找-多路查找详解篇2

B+树(B+tree)

B+树(B+ tree)是B-树的一种变种,特别适用于范围查询和顺序访问。

结构特点:

B+树与B-树类似,由节点组成,每个节点可以存储多个关键字,这些关键字按升
序排列。
B+树的特点是只有叶子节点存储了真实数据,而内部节点仅用于索引。叶子节点
通过指针连接形成一个链表,方便范围查询和顺序访问。
内部节点特点:
内部节点存储关键字和指向子节点的指针。
内部节点的关键字按升序排列,用于指示范围查询的起点。
内部节点的指针指向比关键字更大的子节点。
叶子节点特点:
叶子节点存储真实数据和指向下一个叶子节点的指针。
叶子节点的关键字按升序排列,支持范围查询和顺序访问。
所有叶子节点通过指针连接成一个链表,便于范围查询和顺序访问。

插入操作:

当要插入一个关键字时,从根节点开始,找到合适的叶子节点。
如果叶子节点已满,则需要进行节点分裂操作。将中间位置的关键字提升到父节
点,并将两个剩余的部分分别创建为新的叶子节点。
如果叶子节点还没有满,则直接将关键字插入到合适的位置。

删除操作:

当要删除一个关键字时,从根节点开始,找到包含该关键字的叶子节点。
直接删除叶子节点中的关键字,并更新链表指针。
删除操作后,如果叶子节点的关键字个数过少,则需要从兄弟节点借用关键字或
进行节点合并。

查询操作:

B+树的查询操作与B-树类似,从根节点开始,根据关键字的大小比较,向左或向
  右子节点递归查询,直到找到匹配的关键字或遇到叶子节点。
对于范围查询和顺序访问,可以从叶子节点开始,沿着链表进行遍历。

强调

B+树的特点在于只有叶子节点存储真实数据,这样使得范围查询和顺序访问更加
高效,因为数据在叶子节点上连续存储,读取连续的数据块比随机读取更快。而
内部节点仅存储索引信息,可以容纳更多的索引,提高了查询效率。B+树的实现
适用于需要高效地处理大量数据的数据库和文件系统,能够提供较高的查询性能
和存储效率。

代码实现

import java.util.ArrayList;
import java.util.List;
class BPlusTreeNode {
    public boolean isLeaf;
    public List<Integer> keys;
    public List<Object> values;
    public List<BPlusTreeNode> children;
    public BPlusTreeNode next;
    public BPlusTreeNode() {
        isLeaf = false;
        keys = new ArrayList<>();
        values = new ArrayList<>();
        children = new ArrayList<>();
        next = null;
    }
}
class BPlusTree {
    private BPlusTreeNode root;
    private int m;
    public BPlusTree(int m) {
        root = new BPlusTreeNode();
        root.isLeaf = true;
        this.m = m;
    }
    // 插入操作
    public void insert(int key, Object value) {
        if (root.keys.size() == m) {
            BPlusTreeNode newRoot = new BPlusTreeNode();
            newRoot.children.add(root);
            splitChild(newRoot, 0, root);
            root = newRoot;
        }
        insertNonFull(root, key, value);
    }
    // 非满子节点插入操作
    private void insertNonFull(BPlusTreeNode node, int key, Object value) {
        int index = node.keys.size() - 1;
        if (node.isLeaf) {
            while (index >= 0 && node.keys.get(index) > key) {
                index--;
            }
            node.keys.add(index + 1, key);
            node.values.add(index + 1, value);
            node.next = node.next;
        } else {
            while (index >= 0 && node.keys.get(index) > key) {
                index--;
            }
            index++;
            if (node.children.get(index).keys.size() == m) {
                splitChild(node, index, node.children.get(index));
                if (node.keys.get(index) < key) {
                    index++;
                }
            }
            insertNonFull(node.children.get(index), key, value);
        }
    }
    // 分裂满子节点
    private void splitChild(BPlusTreeNode parent, int index, BPlusTreeNode node) {
        BPlusTreeNode newNode = new BPlusTreeNode();
        newNode.isLeaf = node.isLeaf;
        parent.keys.add(index, node.keys.get(m / 2));
        parent.children.add(index + 1, newNode);
        newNode.keys.addAll(node.keys.subList((m / 2) + 1, m));
        newNode.values.addAll(node.values.subList((m / 2) + 1, m));
        if (!node.isLeaf) {
            newNode.children.addAll(node.children.subList((m / 2) + 1, m + 1));
            node.children.subList((m / 2) + 1, m + 1).clear();
        } else {
            newNode.next = node.next;
            node.next = newNode;
        }
        node.keys.subList(m / 2, m).clear();
        node.values.subList(m / 2, m).clear();
    }
    // 搜索操作
    public List<Object> search(int key) {
        return search(root, key);
    }
    private List<Object> search(BPlusTreeNode node, int key) {
        int index = 0;
        while (index < node.keys.size() && key > node.keys.get(index)) {
            index++;
        }
        if (index < node.keys.size() && key == node.keys.get(index)) {
            return node.values.get(index);
        } else if (node.isLeaf) {
            return null;
        } else {
            return search(node.children.get(index), key);
        }
    }
}

B树(B-tree)

B树(B-tree)是一种平衡的多路查找树,主要用于在磁盘等外部存储设备中高
效地存储和检索大量数据。以下是关于B树的详细介绍:

结构特点:

B树由节点组成,每个节点可以存储多个关键字,这些关键字按升序排列。
B树的特点是节点的关键字按升序排列,具有高度平衡的特性。
每个节点通常有多个子节点,最多可以拥有m个子节点,其中m称为B树的阶数。

插入操作:

当要插入一个关键字时,从根节点开始,判断关键字应插入的位置。
如果节点已满(即已有m-1个关键字),则需要进行节点分裂操作。将中间位置
的关键字提升为父节点,并将节点分裂为两个节点,将剩余的关键字均匀分配到
这两个节点中。
如果要插入的节点还没有满,则直接将关键字插入到合适的位置。

删除操作:

当要删除一个关键字时,从根节点开始,找到包含该关键字的节点。
如果该节点是叶子节点,直接删除关键字。
如果该节点是内部节点,有几种情况需要处理:
如果该节点有足够多的关键字,则可以直接删除关键字。
如果该节点的关键字数量过少,需要考虑兄弟节点的关键字数量以及兄弟节点合
并的情况。

查询操作:

B树的查询操作与二叉查找树类似,从根节点开始,根据关键字的大小比较,向
左或向右子节点递归查询,直到找到匹配的关键字或遇到叶子节点。
B树适用于大规模数据存储和查询的场景,特别适用于外部存储设备上的数据存
储。其平衡性保证了较为均衡的查询性能,因为从根节点到叶子节点的路径长度
相等或差别不大。B树的阶数m可以根据具体应用和硬件限制来选择,较大的阶数
有助于减少磁盘访问的次数,提高效率。

强调

B树的变种B+树在B树的基础上做了一些优化,将所有的数据都存储在叶子节点
中,使得范围查询和顺序访问更加高效。因此,B+树在现代数据库系统和文件
系统中更为常见和广泛应用。、

代码实现

import java.util.ArrayList;
import java.util.List;
class BTreeNode {
    int degree; // B树的阶数
    List<Integer> keys; // 节点中存储的关键字
    List<BTreeNode> children; // 节点的子节点
    boolean isLeaf; // 是否是叶子节点
    public BTreeNode(int degree, boolean isLeaf) {
        this.degree = degree;
        this.isLeaf = isLeaf;
        keys = new ArrayList<>();
        children = new ArrayList<>();
    }
}
class BTree {
    BTreeNode root; // B树的根节点
    int degree; // B树的阶数
    public BTree(int degree) {
        this.degree = degree;
        root = new BTreeNode(degree, true);
    }
    // 插入关键字
    public void insert(int key) {
        if (root.keys.size() == (2 * degree - 1)) {
            BTreeNode newRoot = new BTreeNode(degree, false);
            newRoot.children.add(root);
            splitChild(newRoot, 0, root);
            root = newRoot;
        }
        insertNonFull(root, key);
    }
    // 在非满节点插入关键字
    private void insertNonFull(BTreeNode node, int key) {
        int index = node.keys.size() - 1;
        if (node.isLeaf) {
            while (index >= 0 && key < node.keys.get(index)) {
                index--;
            }
            node.keys.add(index + 1, key);
        } else {
            while (index >= 0 && key < node.keys.get(index)) {
                index--;
            }
            index++;
            if (node.children.get(index).keys.size() == (2 * degree - 1)) {
                splitChild(node, index, node.children.get(index));
                if (key > node.keys.get(index)) {
                    index++;
                }
            }
            insertNonFull(node.children.get(index), key);
        }
    }
    // 分裂子节点
    private void splitChild(BTreeNode parent, int index, BTreeNode node) {
        BTreeNode newNode = new BTreeNode(degree, node.isLeaf);
        parent.keys.add(index, node.keys.get(degree - 1));
        parent.children.add(index + 1, newNode);
        for (int i = 0; i < degree - 1; i++) {
            newNode.keys.add(node.keys.get(i + degree));
            if (!node.isLeaf) {
                newNode.children.add(node.children.get(i + degree));
            }
        }
        if (!node.isLeaf) {
            newNode.children.add(node.children.get(2 * degree - 1));
        }
        for (int i = degree - 1; i >= 0; i--) {
            node.keys.remove(i + degree - 1);
            if (!node.isLeaf) {
                node.children.remove(i + degree);
            }
        }
    }
    // 搜索关键字
    public boolean search(int key) {
        return search(root, key);
    }
    private boolean search(BTreeNode node, int key) {
        int index = 0;
        while (index < node.keys.size() && key > node.keys.get(index)) {
            index++;
        }
        if (index < node.keys.size() && key == node.keys.get(index)) {
            return true;
        } else if (node.isLeaf) {
            return false;
        } else {
            return search(node.children.get(index), key);
        }
    }
}

Trie树(字典树或前缀树)

Trie树,也被称为字典树或前缀树,是一种用于高效存储和搜索字符串的树型数
据结构。Trie树的主要特点是通过字符串的前缀来进行搜索和匹配。

结构特点:

Trie树由根节点和一系列子节点组成。
根节点不包含任何关键字,每个子节点都表示一个字符,并按字符的顺序连接形
成路径。
从根节点到每个叶子节点的路径都对应一个字符串。
每个节点可以存储额外的信息,如词频或附加数据等。

插入操作:

当要插入一个字符串时,从根节点开始,逐个字符按顺序插入。
如果某个字符对应的子节点不存在,则创建一个新的子节点。
插入字符串的最后一个字符后,将当前节点标记为一个单词的结束。

搜索操作:

当要搜索一个字符串时,从根节点开始,逐个字符按顺序匹配。
如果某个字符对应的子节点存在,则继续匹配下一个字符。
如果匹配遇到缺失的字符或到达某个节点后没有子节点,则表示字符串不在Trie
树中。
如果匹配成功并且在Trie树中找到最后一个字符,则表示字符串存在于Trie树中。

删除操作:

当要删除一个字符串时,从根节点开始,逐个字符按顺序遍历。
如果遍历过程中发现某个字符对应的子节点不存在,则表示字符串不存在于Trie
树中。
如果遍历成功,并到达字符串的最后一个字符,将当前节点的结束标记取消。
如果遍历成功,但还存在其他相关字符串(例如,删除"abc"但还有"abcd"),
可以保留当前节点以表示其他相关字符串。

优点:

搜索的时间复杂度与字符串长度无关,仅与Trie树的高度相关,通常比哈希表更
高效。
可以高效地搜索具有相同前缀的字符串集合。
对于字符串的前缀匹配和自动补全,Trie树可以提供高效的结果。

缺点:

空间消耗较大,尤其在处理大量长字符串时。为了缓解这个问题,可以使用压缩
的Trie树,如压缩前缀树(Patricia树)或Trie树的变种来减少存储空间。

代码实现

class TrieNode {
    private TrieNode[] children;
    private boolean isEndOfWord;
    public TrieNode() {
        children = new TrieNode[26]; // 26个英文字母
        isEndOfWord = false;
    }
    public TrieNode getChild(char ch) {
        return children[ch - 'a'];
    }
    public void setChild(char ch, TrieNode node) {
        children[ch - 'a'] = node;
    }
    public boolean isEndOfWord() {
        return isEndOfWord;
    }
    public void setEndOfWord(boolean isEndOfWord) {
        this.isEndOfWord = isEndOfWord;
    }
}
class Trie {
    private TrieNode root;
    public Trie() {
        root = new TrieNode();
    }
    public void insert(String word) {
        TrieNode node = root;
        for (char ch : word.toCharArray()) {
            if (node.getChild(ch) == null) {
                node.setChild(ch, new TrieNode());
            }
            node = node.getChild(ch);
        }
        node.setEndOfWord(true);
    }
    public boolean search(String word) {
        TrieNode node = findNode(word);
        return node != null && node.isEndOfWord();
    }
    public boolean startsWith(String prefix) {
        TrieNode node = findNode(prefix);
        return node != null;
    }
    private TrieNode findNode(String str) {
        TrieNode node = root;
        for (char ch : str.toCharArray()) {
            node = node.getChild(ch);
            if (node == null) {
                return null;
            }
        }
        return node;
    }
}

使用示例

public class Main {
    public static void main(String[] args) {
        Trie trie = new Trie();
        trie.insert("apple");
        trie.insert("banana");
        trie.insert("grape");
        System.out.println(trie.search("apple")); // 输出: true
        System.out.println(trie.search("orange")); // 输出: false
        System.out.println(trie.startsWith("app")); // 输出: true
        System.out.println(trie.startsWith("ban")); // 输出: true
        System.out.println(trie.startsWith("grap")); // 输出: true
    }
}
相关文章
|
2月前
|
算法
算法—查找假币
算法—查找假币
61 0
|
4月前
|
算法 C++
查找方式:依次查找与二分查找
查找方式:依次查找与二分查找
|
算法
查找
查找是指在图中寻找特定的节点或边的过程。在图中进行查找操作可以帮助我们找到与目标节点或边相关的信息,或者判断图中是否存在某个节点或边。 在图中进行查找操作的常见算法有: 1. 深度优先搜索(DFS):从图中的一个节点开始,沿着一条路径一直深入直到无法再深入为止,然后回溯到上一个节点,继续深入其他路径,直到找到目标节点或遍历完所有节点。 2. 广度优先搜索(BFS):从图中的一个节点开始,先访问它的所有邻居节点,然后再依次访问邻居的邻居节点,直到找到目标节点或遍历完所有节点。 3. Dijkstra算法:用于在带权有向图中找到从一个节点到其他节点的最短路径。该算法通过不断更新节点的最短距离来逐步
80 0
|
7月前
查找数据
查找数据。
37 1
查找-多路查找详解篇1
查找-多路查找详解篇1
|
存储 数据库 索引
查找-之多路查找树
一个结点只存储1个元素,在元素很多时,使得树的深度或高度很大 出现的问题是:内存存取外存的次数非常多-使得时间效率降低
67 0
查找-之多路查找树
|
算法 大数据 索引
算法查找——分块查找
分块查找是折半查找(二分查找)和顺序查找的一种改进方法,分块查找由于只要求索引表是有序的,对块内节点没有排序要求,因此特别适合于节点动态变化的情况。分块查找的速度虽然不如折半查找算法,但比顺序查找算法快得多,同时又不需要对全部节点进行排序
265 0
算法查找——分块查找
|
存储 机器学习/深度学习 算法
如何更快速地查找
查找算法在计算机程序设计中占据着主要的核心位置,查找算法的效率直接影响着计算机程序设计与开发的结果与速度。本章主要会讲到顺序查找、二分查找、索引查找和哈希查找这四种查找算法以及效率分析。掌握了相关查找算法,不管是在代码编程计算机技术上面,还在日常生活中都会有很大的用处。
273 0
如何更快速地查找
|
存储 算法 Java
练习2—数据查找
练习2—数据查找
105 0