[Python]多任务编程--线程(二)

简介: [Python]多任务编程--线程(二)

5. 线程之间共享全局变量

  1. 定义一个列表类型的全局变量
  2. 创建两个子线程分别执行向全局变量添加数据的任务和向全局变量读取数据的任务
  3. 查看线程之间是否共享全局变量数据
import threading
import time
# 定义全局变量
my_list = list()
# 写入数据任务
def write_data():
    for i in range(5):
        my_list.append(i)
        time.sleep(0.1)
    print("write_data:", my_list)
# 读取数据任务
def read_data():
    print("read_data:", my_list)
if __name__ == '__main__':
    # 创建写入数据的线程
    write_thread = threading.Thread(target=write_data)
    # 创建读取数据的线程
    read_thread = threading.Thread(target=read_data)
    write_thread.start()
    # 延时
    # time.sleep(1)
    # 主线程等待写入线程执行完成以后代码在继续往下执行
    write_thread.join()
    print("开始读取数据啦")
    read_thread.start()

6. 线程之间共享全局变量数据出现错误问题

  1. 定义两个函数,实现循环100万次,每循环一次给全局变量加1
  2. 创建两个子线程执行对应的两个函数,查看计算后的结果
import threading
# 定义全局变量
g_num = 0
# 循环一次给全局变量加1
def sum_num1():
    for i in range(1000000):
        global g_num
        g_num += 1
    print("sum1:", g_num)
# 循环一次给全局变量加1
def sum_num2():
    for i in range(1000000):
        global g_num
        g_num += 1
    print("sum2:", g_num)
if __name__ == '__main__':
    # 创建两个线程
    first_thread = threading.Thread(target=sum_num1)
    second_thread = threading.Thread(target=sum_num2)
    # 启动线程
    first_thread.start()
    # 启动线程
    second_thread.start()

多线程同时对全局变量操作数据发生了错误

错误分析:

两个线程first_thread和second_thread都要对全局变量g_num(默认是0)进行加1运算,但是由于是多线程同时操作,有可能出现下面情况:

1.在g_num=0时,first_thread取得g_num=0。此时系统把first_thread调度为”sleeping”状态,把second_thread转换为”running”状态,t2也获得g_num=0

2.然后second_thread对得到的值进行加1并赋给g_num,使得g_num=1

3.然后系统又把second_thread调度为”sleeping”,把first_thread转为”running”。线程t1又把它之前得到的0加1后赋值给g_num。

4.这样导致虽然first_thread和first_thread都对g_num加1,但结果仍然是g_num=1

全局变量数据错误的解决办法:

线程同步: 保证同一时刻只能有一个线程去操作全局变量

同步: 就是协同步调,按预定的先后次序进行运行。如:你说完,我再说

线程同步的方式:

1.线程等待(join)

2.互斥锁

线程等待的示例代码:

import threading
# 定义全局变量
g_num = 0
# 循环1000000次每次给全局变量加1
def sum_num1():
    for i in range(1000000):
        global g_num
        g_num += 1
    print("sum1:", g_num)
# 循环1000000次每次给全局变量加1
def sum_num2():
    for i in range(1000000):
        global g_num
        g_num += 1
    print("sum2:", g_num)
if __name__ == '__main__':
    # 创建两个线程
    first_thread = threading.Thread(target=sum_num1)
    second_thread = threading.Thread(target=sum_num2)
    # 启动线程
    first_thread.start()
    # 主线程等待第一个线程执行完成以后代码再继续执行,让其执行第二个线程
    # 线程同步: 一个任务执行完成以后另外一个任务才能执行,同一个时刻只有一个任务在执行
    first_thread.join()
    # 启动线程
    second_thread.start()

互斥锁

1.互斥锁的概念

互斥锁: 对共享数据进行锁定,保证同一时刻只能有一个线程去操作。

注意:

互斥锁是多个线程一起去抢锁,抢到锁的线程先执行,没有抢到锁的线程需要等待,等互斥锁使用完释放后,其它等待的线程再去抢这个锁。

互斥锁的作用就是保证同一时刻只能有一个线程去操作共享数据,保证共享数据不会出现错误问题.

使用互斥锁的好处确保某段关键代码只能由一个线程从头到尾完整地去执行

使用互斥锁会影响代码的执行效率,多任务改成了单任务执行

互斥锁如果没有使用好容易出现死锁的情况

2. 互斥锁的使用

互斥锁能够保证多个线程访问共享数据不会出现数据错误问题

threading模块中定义了Lock变量,这个变量本质上是一个函数,通过调用这个函数可以获取一把互斥锁。

互斥锁使用步骤:

# 创建锁
mutex = threading.Lock()
# 上锁
mutex.acquire()
...这里编写代码能保证同一时刻只能有一个线程去操作, 对共享数据进行锁定...
# 释放锁
mutex.release()

注意点:

acquire和release方法之间的代码同一时刻只能有一个线程去操作

如果在调用acquire方法的时候 其他线程已经使用了这个互斥锁,那么此时acquire方法会堵塞,直到这个互斥锁释放后才能再次上锁。

3. 使用互斥锁完成2个线程对同一个全局变量各加100万次的操作

import threading
# 定义全局变量
g_num = 0
# 创建全局互斥锁
lock = threading.Lock()
# 循环一次给全局变量加1
def sum_num1():
    # 上锁
    lock.acquire()
    for i in range(1000000):
        global g_num
        g_num += 1
    print("sum1:", g_num)
    # 释放锁
    lock.release()
# 循环一次给全局变量加1
def sum_num2():
    # 上锁
    lock.acquire()
    for i in range(1000000):
        global g_num
        g_num += 1
    print("sum2:", g_num)
    # 释放锁
    lock.release()
if __name__ == '__main__':
    # 创建两个线程
    first_thread = threading.Thread(target=sum_num1)
    second_thread = threading.Thread(target=sum_num2)
    # 启动线程
    first_thread.start()
    second_thread.start()
    # 提示:加上互斥锁,哪个线程抢到这个锁我们决定不了,哪个线程抢到锁哪个线程先执行,没有抢到的线程需要等待
    # 加上互斥锁多任务瞬间变成单任务,性能会下降,也就是说同一时刻只能有一个线程去执行

死锁

1. 死锁的概念

死锁: 一直等待对方释放锁的情景就是死锁

现实社会中,男女双方吵架了,双方一直等待对方先道歉的这种行为就好比是死锁。

死锁的结果:会造成应用程序的停止响应,不能再处理其它任务了。

2. 死锁示例

import threading
import time
# 创建互斥锁
lock = threading.Lock()
# 根据下标去取值, 保证同一时刻只能有一个线程去取值
def get_value(index):
    # 上锁
    lock.acquire()
    print(threading.current_thread())
    my_list = [3, 6, 8, 1]
    # 判断下标释放越界
    if index >= len(my_list):
        print("下标越界:", index)
        return
    value = my_list[index]
    print(value)
    time.sleep(0.2)
    # 释放锁
    lock.release()
if __name__ == '__main__':
    # 模拟大量线程去执行取值操作
    for i in range(30):
        sub_thread = threading.Thread(target=get_value, args=(i,))
        sub_thread.start()

下标越界,直接退出任务,锁没有得到释放,程序停止响应,不能再处理其它任务。

3. 避免死锁

避免死锁,就需要在合适的地方释放锁

import threading
import time
# 创建互斥锁
lock = threading.Lock()
# 根据下标去取值, 保证同一时刻只能有一个线程去取值
def get_value(index):
    # 上锁
    lock.acquire()
    print(threading.current_thread())
    my_list = [3, 6, 8, 1]
    if index >= len(my_list):
        print("下标越界:", index)
        # 当下标越界需要释放锁,让后面的线程还可以取值
        lock.release()
        return
    value = my_list[index]
    print(value)
    time.sleep(0.2)
    # 释放锁
    lock.release()
if __name__ == '__main__':
    # 模拟大量线程去执行取值操作
    for i in range(30):
        sub_thread = threading.Thread(target=get_value, args=(i,))
        sub_thread.start()

进程和线程的对比

进程和线程都是完成多任务的一种方式

  1. 线程是依附在进程里面的,没有进程就没有线程
  2. 一个进程默认提供一条线程进程可以创建多个线程
  3. 进程之间不共享全局变量
  4. 线程之间共享全局变量,但是要注意资源竞争的问题,解决办法: 互斥锁或者线程同步
  5. 创建进程的资源开销要比创建线程的资源开销要
  6. 进程是操作系统资源分配的基本单位,线程是CPU调度的基本单位
  7. 线程不能够独立执行,必须依存在进程中
  8. 多进程开发比单进程多线程开发稳定性要强,某个进程挂掉不会影响其它进程。
  • 进程优缺点:
  • 优点:可以用多核
  • 缺点:资源开销大
  • 线程优缺点:
  • 优点:资源开销小
  • 缺点:不能使用多核
相关文章
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
1月前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
116 80
|
18天前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
80 17
|
25天前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
40 14
|
16天前
|
存储 安全 数据可视化
用Python实现简单的任务自动化
本文介绍如何使用Python实现任务自动化,提高效率和准确性。通过三个实用案例展示:1. 使用`smtplib`和`schedule`库自动发送邮件提醒;2. 利用`shutil`和`os`库自动备份文件;3. 借助`requests`库自动下载网页内容。每个案例包含详细代码和解释,并附带注意事项。掌握这些技能有助于个人和企业优化流程、节约成本。
50 3
|
1月前
|
数据采集 存储 监控
21个Python脚本自动执行日常任务(2)
21个Python脚本自动执行日常任务(2)
107 7
21个Python脚本自动执行日常任务(2)
|
1月前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
167 2
|
1月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
84 2
|
1月前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
59 10
|
1月前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####

热门文章

最新文章