优化cv2.findContours()函数提取的目标边界点,使语义分割进行远监督辅助标注

简介: 可以看到cv2.findContours()函数可以将目标的所有边界点都进行导出来,但是他的点存在一个问题,太过密集,如果我们想将语义分割的结果重新导出成labelme格式的json文件进行修正时,这就会存在点太密集没有办法进行修改,这里展示一个示例:没有对导出的结果进行修正,在labelme中的效果图。

优化cv2.findContours()函数提取的目标边界点


假设我们想要提取的目标边界长这样:


1cb97ad274f445798a0bc39f22b0937b.png


我们先使用以下代码查看效果


import cv2
import numpy as np
import os
if __name__ == '__main__':
    # 图像可以选择自己的
    image_filepath = './landslide/image/20221129112713.png'
    # 读取图像
    image = cv2.imread(image_filepath)
    # 转化为灰度图像
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    cv2.imshow('gray', gray)
    cv2.waitKey(0)
    # 提取轮廓,重要的是contours这个数组类型
    contours, hierarchy = cv2.findContours(gray, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    for i in range(len(contours)):
        # 每一次对一个轮廓进行描边,描边的颜色为color参数,轮廓的索引值为i
        new_image = cv2.drawContours(image, contours, i, color=[0, 0, 255])
        cv2.imshow('new_image', new_image)
        cv2.waitKey(0)


可以看到cv2.findContours()函数可以将目标的所有边界点都进行导出来,但是他的点存在一个问题,太过密集,如果我们想将语义分割的结果重新导出成labelme格式的json文件进行修正时,这就会存在点太密集没有办法进行修改,这里展示一个示例:没有对导出的结果进行修正,在labelme中的效果图。


8d97b478fa114843af92ac19961b88a9.png


可以看到这里直接导出的点太过于密集,需要对其进行一个优化,否则难以直接使用labelme进行修正。


优化的思想可以使用一些优化算法对密集的点进行删除,网上都有一些教程。


这里我们提供我们转化后的一个效果图:


416128b373324788b46b38023c65e664.png


目前这个点的密集程度已经大大减少,基本上已经接近人工在labelme软件上标注的效果。


创作不易,可以通过这个链接下载代码,如果存在问题可以私信我下载链接

如果对您有帮助可以点👍哦

目录
相关文章
|
19天前
|
机器学习/深度学习 数据可视化 PyTorch
零基础入门语义分割-地表建筑物识别 Task5 模型训练与验证-学习笔记
零基础入门语义分割-地表建筑物识别 Task5 模型训练与验证-学习笔记
462 2
|
移动开发 文字识别 算法
论文推荐|[PR 2019]SegLink++:基于实例感知与组件组合的任意形状密集场景文本检测方法
本文简要介绍Pattern Recognition 2019论文“SegLink++: Detecting Dense and Arbitrary-shaped Scene Text by Instance-aware Component Grouping”的主要工作。该论文提出一种对文字实例敏感的自下而上的文字检测方法,解决了自然场景中密集文本和不规则文本的检测问题。
1889 0
论文推荐|[PR 2019]SegLink++:基于实例感知与组件组合的任意形状密集场景文本检测方法
|
9天前
|
计算机视觉
论文介绍:像素级分类并非语义分割的唯一选择
【5月更文挑战第24天】论文《像素级分类并非语义分割的唯一选择》提出了MaskFormer模型,该模型通过掩模分类简化语义与实例级分割任务,无需修改模型结构、损失函数或训练过程。在ADE20K和COCO数据集上取得优异性能,显示处理大量类别时的优势。MaskFormer结合像素级、Transformer和分割模块,提高效率和泛化能力。掩模分类方法对比边界框匹配更具效率,且MaskFormer的掩模头设计降低计算成本。该方法为语义分割提供新思路,但实际应用与小物体处理仍有待检验。[链接](https://arxiv.org/abs/2107.06278)
16 3
|
19天前
|
测试技术
Vript:最为详细的视频文本数据集,每个视频片段平均超过140词标注 | 多模态大模型,文生视频
[Vript](https://github.com/mutonix/Vript) 是一个大规模的细粒度视频文本数据集,包含12K个高分辨率视频和400k+片段,以视频脚本形式进行密集注释,每个场景平均有145个单词的标题。除了视觉信息,还转录了画外音,提供额外背景。新发布的Vript-Bench基准包括三个挑战性任务:Vript-CAP(详细视频描述)、Vript-RR(视频推理)和Vript-ERO(事件时序推理),旨在推动视频理解的发展。
51 1
Vript:最为详细的视频文本数据集,每个视频片段平均超过140词标注 | 多模态大模型,文生视频
|
7月前
|
机器学习/深度学习 传感器 算法
单目3D目标检测 方法综述——直接回归方法、基于深度信息方法、基于点云信息方法
本文综合整理单目3D目标检测的方法模型,包括:基于几何约束的直接回归方法,基于深度信息的方法,基于点云信息的方法。万字长文,慢慢阅读~ 直接回归方法 涉及到模型包括:MonoCon、MonoDLE、MonoFlex、CUPNet、SMOKE等。 基于深度信息的方法 涉及到模型包括:MF3D、MonoGRNet、D4LCN、MonoPSR等。 基于点云信息的方法 涉及到模型包括:Pseudo lidar、DD3D、CaDDN、LPCG等。
623 2
|
19天前
|
机器学习/深度学习 PyTorch 数据处理
零基础入门语义分割-地表建筑物识别 Task2 数据扩增-学习笔记
零基础入门语义分割-地表建筑物识别 Task2 数据扩增-学习笔记
43 1
|
10月前
|
PyTorch 算法框架/工具
语义分割数据增强——图像和标注同步增强
其中常见的数据增强方式包括:旋转、垂直翻转、水平翻转、放缩、剪裁、归一化等。
408 0
|
11月前
|
机器学习/深度学习 自动驾驶
使用迭代方法为语义分割网络生成对抗性
使用迭代方法为语义分割网络生成对抗性。
83 0
|
人工智能 计算机视觉
分割一切后,Segment Anything又能分辨类别了:Meta/UTAustin提出全新开放类分割模型
分割一切后,Segment Anything又能分辨类别了:Meta/UTAustin提出全新开放类分割模型
179 0
|
机器学习/深度学习 人工智能 网络架构
CVPR‘2023 | PIDNet: 基于注意力机制引导的实时语义分割网络架构,完美解决空间细节、上下文和边界信息
CVPR‘2023 | PIDNet: 基于注意力机制引导的实时语义分割网络架构,完美解决空间细节、上下文和边界信息
650 0