考虑实时市场联动的电力零售商鲁棒定价策略(Matlab代码实现)

简介: 考虑实时市场联动的电力零售商鲁棒定价策略(Matlab代码实现)

💥1 概述

参考文献:

摘要:电力零售商作为连接电力批发市场与零售市场的桥梁,是电力市场化改革中的重要主体,其经营效率直接决定了市场化改革的成败。然而电力零售商在运营过程中面临着用电量需求和价格双重不确定性的市场风险,亟需通过优化市场行为以保障自身的利益。为此提出了考虑实时市场联动的电力零售商鲁棒定价策略,以提升其抗风险能力。首先,考虑电力零售商日前定价、日前购电、实时能量管理、电动汽车用户需求响应和电力市场统一出清价格等因素,建立了考虑电动汽车不确定性的电力零售商鲁棒定价模型。然后,通过线性化方法将鲁棒定价模型转化为两阶段混合整数规划,并通过列与约束生成算法迭代求解。最后,在IEEE-33节点测试系统上进行了仿真,结果表明所提策略充分考虑了市场不确定性因素的影响,利用对冲机制降低了市场风险,提高了电力零售商的经营效率。


关键词:


电力现货市场;需求响应;零售定价;鲁棒优化;


本文采用IEEE-33节点测试系统,节点边际电价通过二阶锥模型计算得到,节点边际电价通过最小二乘法拟合为一次函数,实时电价场景通过聚类得到,电动汽车类型通过聚类得到,电动汽车需求响应通过主从博弈模型描述并转化为KKT条件,两阶段离散场景分布鲁棒优化模型通过列与约束生成算法迭代求解,主问题为混合整数二次规划问题,子问题为混合整数线性规划问题。


📚2 运行结果

IEEE 33节点配电系统共有32个配电变压器,32条支路,其电压等级为12.66kV,功率基准值为100MVA,最大基础负荷为3715+j2300kVA,节点0为平衡节点,其电压为1.05 p.u.,其拓扑结构如图1所示,线路与配变参数如表1所示。

图1 IEEE 33节点配电系统拓扑结构

表1 IEEE 33节点配电系统参数

1690683331446.png


部分结果:

部分代码:

%% 建模
pch=data_MP.pch;pdis=data_MP.pdis;price_EV=data_MP.price_EV;Pb_DA=data_MP.Pb_DA;price_DA=data_MP.price_DA;%鲁棒主问题数据
Pch=sdpvar(24,10);%储能系统充电
Pdis=sdpvar(24,10);%储能系统放电
S_ESS=sdpvar(24,10);%储能系统电量状态
Pb_RT=sdpvar(24,10);%实时购电量
Ps_RT=sdpvar(24,10);%实时售电量
ratio=sdpvar(10,1);%不同类型电动汽车的分布
C_ESS=[0<=Pch<=250,0<=Pdis<=250,200<=S_ESS<=950,
    S_ESS(1,:)==500+0.95*Pch(1,:)-Pdis(1,:)/0.95,
    S_ESS(2:24,:)==S_ESS(1:23,:)+0.95*Pch(2:24,:)-Pdis(2:24,:)/0.95,
    S_ESS(24,:)==500];%储能系统约束条件
C_CS=[0<=Pb_RT<=500,0<=Ps_RT<=500,Pb_DA*ones(1,10)+Pb_RT+Pdis+N*pdis*ratio*ones(1,10)==Ps_RT+Pch+N*pch*ratio*ones(1,10)];%零售商约束条件
obj_inner=sum(PDF.*sum(-(price_RT'+0.001).*Pb_RT+(price_RT'-0.001).*Ps_RT));%内层问题目标函数(最大化)
Constraints_inner=[C_ESS,C_CS];%内层问题约束条件
ops=sdpsettings('kkt.dualbound',0);%不进行对偶边界估计
[KKTsystem,details]=kkt(Constraints_inner,-obj_inner,ratio,ops);%内层问题的KKT条件
C_RO=[sum(ratio)==1,0<=ratio<=1,sum(abs(ratio-ratio_initial))<=log(20/(1-0.99))*10/2000,abs(ratio-ratio_initial)<=log(20/(1-0.99))/2000];%离散场景概率约束
%% 求解
Constraints_outer=[KKTsystem,C_RO];%外层问题约束条件
obj_outer=-price_DA'*Pb_DA+sum(PDF.*sum(-(price_RT'+0.001).*Pb_RT+(price_RT'-0.001).*Ps_RT))+N*price_EV'*(pch-pdis)*ratio;%外层问题目标函数(零售商的收益)
ops=sdpsettings('solver','gurobi','gurobi.FeasibilityTol',1e-9,'gurobi.IntFeasTol',1e-9,'gurobi.MIPGap',1e-9,'gurobi.OptimalityTol',1e-9);%求解器参数,MILP问题
result=optimize(Constraints_outer,obj_outer,ops)%求解最小化问题
result_SP.ratio=double(ratio);result_SP.obj=double(obj_outer);
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]詹祥澎,杨军,王昕妍,沈一民,钱晓瑞,吴赋章.考虑实时市场联动的电力零售商鲁棒定价策略[J].电网技术,2022,46(06):2141-2153.DOI:10.13335/j.1000-3673.pst.2021.2157.

🌈4 Matlab代码实现

相关文章
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
204 0
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
110 0
|
2月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
|
2月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
106 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
143 8
|
2月前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
136 8
|
2月前
|
机器学习/深度学习 数据采集 测试技术
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
154 8
|
2月前
|
机器学习/深度学习 供应链 算法
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
|
2月前
|
传感器 机器学习/深度学习 算法
【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)
【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)
157 0

热门文章

最新文章