用 Python 实现你的量化交易策略

简介: Python 由于开发方便,工具库丰富,尤其科学计算方面的支持很强大,所以目前在量化领域的使用很广泛。市面上也出现了很多支持 Python 语言的量化平台。通过这些平台,你可以很方便地实现自己的交易策略,进行验证,甚至对接交易系统(由于政策原因,现在很多交易接口暂停开放)。

Python 的学习者中,有相当一部分是冲着爬虫去的。因为爬虫可以帮你解决很多工作和生活中的问题,节约你的生命。不过 Python 还有一个神秘而有趣的应用领域,那就是量化交易。


量化交易,就是以数学模型替代人的主观判断来制定交易策略。通常会借助计算机程序来进行策略的计算和验证,最终也常直接用程序根据策略设定的规则自动进行交易。


Python 由于开发方便,工具库丰富,尤其科学计算方面的支持很强大,所以目前在量化领域的使用很广泛。市面上也出现了很多支持 Python 语言的量化平台。通过这些平台,你可以很方便地实现自己的交易策略,进行验证,甚至对接交易系统(由于政策原因,现在很多交易接口暂停开放)。


在交易策略方面,我是外行(虽然曾经也有证券从业资格)。所以本文只是介绍几个 Python 量化平台,以及一些最基本的使用方法。更多的功能、更强大的策略还有待各位自己去挖掘。


目前国内比较知名的几个平台:


优矿 uqer.io

聚宽 joinquant.com

米筐 ricequant.com


国外知名平台:


quantopian.com


它们都可以使用 Python 进行策略开发。


以优矿为例,注册之后,在“开始研究”页面,新建一个 Notebook,就可以开始用 Python 写你自己的策略。



右上角的下拉框选择“策略”,就会帮你自动填写上策略回测的基本结构代码。



开始的一些变量是对回测的基本配置。initialize 里可以做一些初始化的工作。handle_data 则是回测代码的核心,用来实现每个交易日(或每分钟)的交易指令。


具体的变量含义,这里不做特别细致的解释,文档里都有说明。仅从命名和注释里也可以看出,设定了回测的时间,股票池,资金,交易频率等。


文档里给了一个最简单的日线策略代码:


def handle_data(account):
    for stock in account.universe:
        order(stock,100)


此策略就是,在每个交易日,把股票池里每一只股票都买入一手。


account.universe 就是开头设定的 universe 值。这里遍历股票池中的股票。


order 是买卖指令,函数原型是:order(symbol, amount)

参数 symbol 是股票代码,amount 是买卖数量,正为买入,负为卖出。此处买入 100 股,即 1 手。


点击“运行”,或 Ctrl+Enter,即可在页面上看到策略的执行情况。



我们再尝试改动一点点,写一个自己的策略。


我拍脑袋想了这样一个策略:


如果一只未持有的股票 2 个交易日累计涨了 10% 以上,就以当前资金的 5% 买入它。反过来,如果累计跌了 10% 以上,就全部卖出止损。


下面把它实现出来看下回测效果如何。



时间设为去年(2015)全年,起始资金 10 万元。


universe = set_universe('A')


股票池为 A 股所有股票。


account.get_attribute_history('closePrice', 3)


取得股票池中所有股票前 3 天的收盘价(closePrice)。


hist[s][2] - hist[s][0]


得到 1 天前和 3 天前收盘价的差值。


account.valid_secpos


是账户当前所持有的证券信息。


如果收盘价 2 天的差值满足买入条件且未持有,就执行:


order_pct(s, 0.05)


order_pct 表示按账户当前总价值的百分比买入股票。


如果满足卖出条件则执行:


order_to(s, 0)


OK,一个简单到不行的策略已完成。运行一下:



居然,这么简单的策略在最高的时候有超过 90% 的收益,即使在经历了年中的股灾和下半年的震荡之后,到年底也还有 30% 多的收益率,应该超越了大部分散户去年的成绩吧。如果按照这个策略进行交易,啧啧,想想还有点小激动呢。(喂!快醒醒!)


然而现实是残酷的,真实的市场分分钟教你做人。


量化投资以及程序化交易是很有前途的行业,但在你想从事这行,甚至用它赚钱之前,请先深入了解它。


有兴趣的,去看下知乎上的这个问题:


学习量化交易如何入门?

https://www.zhihu.com/question/22211032

前面提到的另外几个平台,和优矿基本类似,API 和功能会有些差异,可以自行尝试,这里不再分别演示。知乎上也有人做过比较:

已知国内量化平台的比较, Ricequant / 优矿究竟谁是下一个quantopian,哪家挖矿强?

https://www.zhihu.com/question/35097533

如果你对这个领域充满好奇,不如现在就立刻动手,从你的第一个策略开始。谁知道你会不会成为下一个巴菲特呢:)


近期文章推荐阅读:

极简 Github 上手教程

如何在 Python 中使用断点调试

Python爬虫:一些常用的爬虫技巧总结

Python 抓取网页乱码原因分析

一些常见的新手问题

如何直观地理解程序的运行过程?

用 Python 实现一个简单的微信红包算

相关文章
|
23天前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
43 3
|
2月前
|
数据可视化 数据处理 Python
如何使用Python实现一个基于均线的交易策略
【10月更文挑战第9天】本文介绍了如何使用Python实现一个基于均线的交易策略。主要步骤包括导入所需库(如`pandas`、`numpy`和`matplotlib`),加载股票或期货的历史数据,计算均线和其他指标,实现交易策略逻辑,以及可视化交易结果。示例代码展示了如何根据均线交叉点进行开仓、止损和止盈操作,并提供了注意事项,如数据来源、交易成本和风险管理。
86 7
|
21天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
机器学习/深度学习 数据采集 TensorFlow
智能市场营销策略优化:使用Python实现深度学习模型
【10月更文挑战第1天】 智能市场营销策略优化:使用Python实现深度学习模型
178 63
|
1月前
|
算法 数据处理 开发者
超越传统:Python二分查找的变种策略,让搜索效率再上新台阶!
本文介绍了二分查找及其几种Python实现的变种策略,包括经典二分查找、查找第一个等于给定值的元素、查找最后一个等于给定值的元素以及旋转有序数组的搜索。通过调整搜索条件和边界处理,这些变种策略能够适应更复杂的搜索场景,提升搜索效率和应用灵活性。
38 5
|
1月前
|
Python
不容错过!Python中图的精妙表示与高效遍历策略,提升你的编程艺术感
本文介绍了Python中图的表示方法及遍历策略。图可通过邻接表或邻接矩阵表示,前者节省空间适合稀疏图,后者便于检查连接但占用更多空间。文章详细展示了邻接表和邻接矩阵的实现,并讲解了深度优先搜索(DFS)和广度优先搜索(BFS)的遍历方法,帮助读者掌握图的基本操作和应用技巧。
36 4
|
1月前
|
算法 IDE API
Python编码规范与代码可读性提升策略####
本文探讨了Python编码规范的重要性,并深入分析了如何通过遵循PEP 8等标准来提高代码的可读性和可维护性。文章首先概述了Python编码规范的基本要求,包括命名约定、缩进风格、注释使用等,接着详细阐述了这些规范如何影响代码的理解和维护。此外,文章还提供了一些实用的技巧和建议,帮助开发者在日常开发中更好地应用这些规范,从而编写出更加清晰、简洁且易于理解的Python代码。 ####
|
1月前
|
数据采集 Web App开发 JavaScript
爬虫策略规避:Python爬虫的浏览器自动化
爬虫策略规避:Python爬虫的浏览器自动化
|
1月前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
68 5
|
2月前
|
设计模式 机器学习/深度学习 算法
现代 Python:编写高效代码的模式、功能和策略(第 1 部分)
现代 Python:编写高效代码的模式、功能和策略(第 1 部分)
33 0