机器学习深度学习面试题(指标类)

简介: 机器学习深度学习面试题(指标类)

1.机器学习分类指标汇总


常用指标


首先需要建立一个表,对于一个分类任务,我们预测情况大致如下面混淆矩阵所示:


预测为正样本 预测为负样本
标签为正样本 TP FN
标签为负样本 FP TN


1.accuracy


1687243036087.png

accuracy指的是正确预测的样本数占总预测样本数的比值,它不考虑预测的样本是正例还是负例,考虑的是全部样本。


2.precision(查准率)


1687243050295.png

precision指的是正确预测的正样本数占所有预测为正样本的数量的比值,也就是说所有预测为正样本的样本中有多少是真正的正样本。从这我们可以看出,precision只关注预测为正样本的部分,


3.recall(召回率)


1687243070070.png

它指的是正确预测的正样本数占真实正样本总数的比值,也就是我能从这些样本中能够正确找出多少个正样本。


4.F-score


1687243086782.png


F-score相当于precision和recall的调和平均,用意是要参考两个指标。从公式我们可以看出,recall和precision任何一个数值减小,F-score都会减小,反之,亦然


5.specificity


1687243102750.png

specificity指标平时见得不多,它是相对于sensitivity(recall)而言的,指的是正确预测的负样本数占真实负样本总数的比值,也就是我能从这些样本中能够正确找出多少个负样本。


6.sensitivity(TPR)


1687243117430.png

7.P-R曲线


我们将纵轴设置为precison,横轴设置成recall,改变阈值就能获得一系列的pair并绘制出曲线。对于不同的模型在相同数据集上的预测效果,我们可以画出一系列的PR曲线。一般来说如果一个曲线完全“包围”另一个曲线,我们可以认为该模型的分类效果要好于对比模型。

aa22deff63f349dc9e3bb469c5ec4bb5.png


样本不均衡下指标


背景


在大多数情况下不同类别的分类代价并不相等,即将样本分类为正例或反例的代价是不能相提并论的。例如在垃圾邮件过滤中,我们希望重要的邮件永远不要被误判为垃圾邮件,还有在癌症检测中,宁愿误判也不漏判。在这种情况下,仅仅使用分类错误率来度量是不充分的,这样的度量错误掩盖了样本如何被错分的事实。所以,在分类中,当某个类别的重要性高于其他类别时,可以使用Precison和Recall多个比分类错误率更好的新指标。


8.ROC


在实际的数据集中经常会出现类别不平衡现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间而变化。而在这种情况下,ROC曲线能够保持不变。同时,我们可以断言,ROC曲线越接近左上角,该分类器的性能越好,意味着分类器在假阳率很低的同时获得了很高的真阳率。

以下是一个ROC曲线的实例:


9cffe8d0281d44688ab32c2a0bfbfba3.png

1687243276227.png

d42ec525aee445ee87801961c3ffdee8.png

现在我们指定一个阈值为0.9,那么只有第一个样本(0.9)会被归类为正例,而其他所有样本都会被归为负例,因此,对于0.9这个阈值,我们可以计算出FPR为0,TPR为0.1(因为总共10个正样本,预测正确的个数为1),那么我们就知道曲线上必有一个点为(0, 0.1)。依次选择不同的阈值(或称为“截断点”),画出全部的关键点以后,再连接关键点即可最终得到ROC曲线如下图所示。


84517f3ff0d541ba90e20adc31f9947f.png

其实还有一种更直观的绘制ROC曲线的方法,就是把横轴的刻度间隔设为,纵轴的刻度间隔设为,N,P分别为负样本与正样本数量。然后再根据模型的输出结果降序排列,依次遍历样本,从0开始绘制ROC曲线,每遇到一个正样本就沿纵轴方向绘制一个刻度间隔的曲线,每遇到一个负样本就沿横轴方向绘制一个刻度间隔的曲线,遍历完所有样本点以后,曲线也就绘制完成了。


使用sklearn进行roc曲线绘制


>>> from sklearnimport metrics
>>> import numpy as np
>>> y = np.array([1, 1, 2, 2]) #假设4个样本
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
>>> fpr #假阳性
array([ 0. ,  0.5,  0.5,  1. ])
>>> tpr #真阳性
array([ 0.5,  0.5,  1. ,  1. ])
>>> thresholds #阈值
array([ 0.8 ,  0.4 ,  0.35,  0.1 ])
>>> #auc(后面会说)
>>> auc = auc = metrics.auc(fpr, tpr)
>>> auc
0.75


绘制曲线:


import matplotlib.pyplot as plt
plt.figure()
lw = 2
plt.plot(fpr, tpr, color='darkorange',
         lw=lw, label='ROC curve (area = %0.2f)' % auc)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()


所画图象如图所示:

f1c3c2a9bc1748a89af72a5486d6218a.png


9.AUC

auc指的是计算roc的面积。AUC值是一个概率值,当你随机挑选一个正样本以及负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值,AUC值越大,当前分类算法越有可能将正样本排在负样本前面,从而能够更好地分类。


def AUC(label, pre):
  """
  适用于python3.0以上版本
   """
  #计算正样本和负样本的索引,以便索引出之后的概率值
    pos = [i for i in range(len(label)) if label[i] == 1]
    neg = [i for i in range(len(label)) if label[i] == 0]
    auc = 0
    for i in pos:
        for j in neg:
            if pre[i] > pre[j]:
                auc += 1
            elif pre[i] == pre[j]:
                auc += 0.5
    return auc / (len(pos)*len(neg))
if __name__ == '__main__':
    label = [1,0,0,0,1,0,1,0]
    pre = [0.9, 0.8, 0.3, 0.1, 0.4, 0.9, 0.66, 0.7]
    print(AUC(label, pre))


1687243348839.png

import numpy as np
def auc_calculate(labels,preds,n_bins=100):
    postive_len = sum(labels)
    negative_len = len(labels) - postive_len
    total_case = postive_len * negative_len
    pos_histogram = [0 for _ in range(n_bins)]
    neg_histogram = [0 for _ in range(n_bins)]
    bin_width = 1.0 / n_bins
    for i in range(len(labels)):
        nth_bin = int(preds[i]/bin_width)
        if labels[i]==1:
            pos_histogram[nth_bin] += 1
        else:
            neg_histogram[nth_bin] += 1
    accumulated_neg = 0
    satisfied_pair = 0
    for i in range(n_bins):
        satisfied_pair += (pos_histogram[i]*accumulated_neg + pos_histogram[i]*neg_histogram[i]*0.5)
        accumulated_neg += neg_histogram[i]
    return satisfied_pair / float(total_case)
 y = np.array([1,0,0,0,1,0,1,0,])
 pred = np.array([0.9, 0.8, 0.3, 0.1,0.4,0.9,0.66,0.7])
print("----auc is :",auc_calculate(y,pred))


2.图像分割指标汇总


1.pixel accuracy(标记正确/总像素数目)


1687243394008.png

2.MPA(Mean Pixel Accuracy)


其计算公式如下:


1687243411599.png

计算每类各自分类的准确率,再取均值!


3.Mlou(Mean Intersection over Union)


计算两个集合的交集与并集之比,在语义分割中,这两个集合为真实值和预测值。


1687243428293.png

3.目标检测指标汇总


主要是用到以下的指标:


mAP:meanAveragePrecision,即各类别AP平均值

AP:PR曲线下面积

PR曲线:Precision-Recall曲线

Precision:TP/(TP+FP)

Recall:TP/(TP+FN)

TP:IoU>0.5的检验框数量(同一GroundTruth只计算一次)

FP:IoU<=0.5的检验框,或者是检测到同一个GT的多余检测框的数量

FN:没有检测到的GT的数量

IOU:计算两个集合的交集与并集之比

NMS:非极大值抑制


4.模型效率衡量


FLOPs(floating point operations)


1687244033761.png


相关文章
|
6月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
|
11月前
|
机器学习/深度学习 人工智能 算法
探索机器学习:从线性回归到深度学习
本文将带领读者从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过代码示例,展示如何实现这些算法,并解释其背后的数学原理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和知识。让我们一起踏上这段激动人心的旅程吧!
211 3
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
559 8
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
542 3
|
11月前
|
机器学习/深度学习 人工智能 算法
机器学习与深度学习:差异解析
机器学习与深度学习作为两大核心技术,各自拥有独特的魅力和应用价值。尽管它们紧密相连,但两者之间存在着显著的区别。本文将从定义、技术、数据需求、应用领域、模型复杂度以及计算资源等多个维度,对机器学习与深度学习进行深入对比,帮助您更好地理解它们之间的差异。
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
324 0
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!