Android 13 Handler 源码

简介: Handler 是一套 Android 消息传递机制。  在多线程应用场景中,将子线程中需要更新 UI 的操作消息,传递到 UI 主线程,从而实现子线程通知 UI 更新最终实现异步消息处理。说白了是用于线程之间的通信。Handler主要有4个重要类:Handler、Message、MessageQueue、Looper。
1、Handler 简介

  Handler 是一套 Android 消息传递机制。

  在多线程应用场景中,将子线程中需要更新 UI 的操作消息,传递到 UI 主线程,从而实现子线程通知 UI 更新最终实现异步消息处理。说白了是用于线程之间的通信。

Handler主要有4个重要类:Handler、Message、MessageQueue、Looper。

  • Handler:负责消息的发送和处理,子线程中使用 sendMessage() 发送消息;在handleMessage()中处理。
  • Message:消息载体,里面存储这线程消息。
  • MessageQueue:消息队列,遵循先进先出的原则,存储着 sendMessage() 发送来的子线程消息。
  • Looper:消息循环器,负责从 MessageQueue 中循环取消息,再将取出的消息分发给
    handleMessage(),来处理消息。

Handler原理图.png

3、Handler 源码

了解 Handler,首先我们要了解 Handler 从消息发送到消息处理这整个流程,下面将分析这一流程,并回答下面几个问题:

  • 1、一个线程有几个Handler?
  • 2、一个线程有几个Looper?如何保证?
  • 3、Handler 内存泄漏原因?为什么其他的内部分没有过这个问题?
  • 4、为何主线程可以 new Handler?如果想要在子线程中 new Handler 要做些什么准备?
  • 5、子线程中的维护的 looper,消息队列无消息的时候处理方案是什么?有什么用?
  • 6、既然可以存在多个 Handler 往 MessageQueue 中添加数据(发消息时,各个handler 可能处于不同的线程),那么它内部是如何确保线程安全的?
  • 7、我们使用 Message 时应如何创建它?
  • 8、使用 Handler 的 postDelay 后,消息队列会有什么变化?
  • 9、Looper 死循环为什么不会导致应用卡死(ANR)?

1. Handler

  Handler 负责消息的发送和处理,该类中通过 sendXXX、postXXX等方法发送消息,共有14个这样的方法。而在 handleMessage() 中处理收到的消息。

  这里以 sendMessage(Message msg) 方法为例进行源码分析。

// Handler.java
public class Handler {
    public final boolean sendMessage(@NonNull Message msg) {
        return sendMessageDelayed(msg, 0);
    }
    public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        // 第二的参数代表执行的时间,为:系统当前时间+延迟的时间
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }
    public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }
    // 不管使用什么方法发送消息,都会调到 Handler#enqueueMessage()
    private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
            long uptimeMillis) {
        // 把当前对象赋给msg.target,这样 Message 就持有了 Handler
        msg.target = this;
        msg.workSourceUid = ThreadLocalWorkSource.getUid();
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        // 调用 MessageQueue#enqueueMessage() 往消息队列添加消息。
        return queue.enqueueMessage(msg, uptimeMillis);
    }
}

1. MessageQueue

enqueueMessage 里面其实是一个优先级队列,将收到消息根据执行的时间 when 进行做排序处理。

// MessageQueue.java
public final class MessageQueue {
    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        synchronized (this) {
            if (msg.isInUse()) {
                throw new IllegalStateException(msg + " This message is already in use.");
            }
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            // 如果是0,则放在最前面
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                // 对单链表轮询,根据 when 进行排序插入消息。
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }
            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }
}

到这里发消息基本完成,后面看如何取消息。

next() 中返回一个 Message。

// MessageQueue.java
public final class MessageQueue {
    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }
        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {  // 死循环,
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }
            // nextPollTimeoutMillis :-1 表示无限等待,直到有事件为止;0 表示立即执行;其他数字表示等待多时毫秒。
            // linux 层休眠等待,
            nativePollOnce(ptr, nextPollTimeoutMillis);
            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                // 拿到队列对头消息
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    // 跟当前时间对比
                    if (now < msg.when) {
                        // 队列中,第一个节点还没到可以执行的时刻,则等待。
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {  // 到了可以执行的时间,则把消息 return 出去。
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }
                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }
                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }
                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }
            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler
                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }
                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }
            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;
            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }
}

到此,消息取出来了,但是谁取的呢?这就涉及到另一个重要的类 Looper

3. Looper

Looper.loop() 里面会有个for循环,且是个死循环,会不断的调用 MessageQueue#next() 方法。

public final class Looper {
     // 初始化Looper 
    public static void prepare() {
        prepare(true);
    }
    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {  // 如果该线程有 Looper,则抛出一个异常。
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        // 这里使用了 ThreadLocal,保证了一个线程只有一个Looper。
        sThreadLocal.set(new Looper(quitAllowed));
    }
    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        if (me.mInLoop) {
            Slog.w(TAG, "Loop again would have the queued messages be executed"
                    + " before this one completed.");
        }
        me.mInLoop = true;
        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();
        // Allow overriding a threshold with a system prop. e.g.
        // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
        final int thresholdOverride =
                SystemProperties.getInt("log.looper."
                        + Process.myUid() + "."
                        + Thread.currentThread().getName()
                        + ".slow", 0);
        me.mSlowDeliveryDetected = false;
        for (;;) {  // 死循环
            // 不断地调用mQueue.next()
            if (!loopOnce(me, ident, thresholdOverride)) {
                return;
            }
        }
    }
    private static boolean loopOnce(final Looper me,
            final long ident, final int thresholdOverride) {
        // 这里如果此时队列中没有消息或队列中,第一个节点还没到可以执行的时刻,则会进入等待,block 状态。
        // 会一直在这等,该等待是Linux层做的,在 mQueue.next()中
        Message msg = me.mQueue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return false;
        }
        // This must be in a local variable, in case a UI event sets the logger
        final Printer logging = me.mLogging;
        // Make sure the observer won't change while processing a transaction.
        final Observer observer = sObserver;
        final long traceTag = me.mTraceTag;
        long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
        long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
        if (thresholdOverride > 0) {
            slowDispatchThresholdMs = thresholdOverride;
            slowDeliveryThresholdMs = thresholdOverride;
        }
        final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
        final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
        final boolean needStartTime = logSlowDelivery || logSlowDispatch;
        final boolean needEndTime = logSlowDispatch;
        if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
            Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
        }
        final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
        final long dispatchEnd;
        Object token = null;
        if (observer != null) {
            token = observer.messageDispatchStarting();
        }
        long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid);
        try {
            // 获取到消息后,就会调用 msg.target.dispatchMessage(msg),即回调 handler#dispatchMessage(msg)
            // msg.target 为 handler对象
            msg.target.dispatchMessage(msg);
            if (observer != null) {
                observer.messageDispatched(token, msg);
            }
            dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
        } catch (Exception exception) {
            if (observer != null) {
                observer.dispatchingThrewException(token, msg, exception);
            }
            throw exception;
        } finally {
            ThreadLocalWorkSource.restore(origWorkSource);
            if (traceTag != 0) {
                Trace.traceEnd(traceTag);
            }
        }
        if (logSlowDelivery) {
            if (me.mSlowDeliveryDetected) {
                if ((dispatchStart - msg.when) <= 10) {
                    Slog.w(TAG, "Drained");
                    me.mSlowDeliveryDetected = false;
                }
            } else {
                if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
                        msg)) {
                    // Once we write a slow delivery log, suppress until the queue drains.
                    me.mSlowDeliveryDetected = true;
                }
            }
        }
        if (logSlowDispatch) {
            showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
        }
        if (logging != null) {
            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
        }
        // Make sure that during the course of dispatching the
        // identity of the thread wasn't corrupted.
        final long newIdent = Binder.clearCallingIdentity();
        if (ident != newIdent) {
            Log.wtf(TAG, "Thread identity changed from 0x"
                    + Long.toHexString(ident) + " to 0x"
                    + Long.toHexString(newIdent) + " while dispatching to "
                    + msg.target.getClass().getName() + " "
                    + msg.callback + " what=" + msg.what);
        }
        msg.recycleUnchecked();
        return true;
    }
}

当获取到消息时,回调用 msg.target.dispatchMessage(msg)handler#dispatchMessage(msg),在 dispatchMessage(msg) 中再回调 handleMessage(msg),这样就收到消息。至此发消息、收消息整个流程结束。

下面回答上述的问题。

1、一个线程有几个Handler?

答:那个,new 多少就有多少。

2、一个线程有几个Looper?如何保证?

答:一个,在初始化时,使用了 ThreadLocal ,而 ThreadLocal 是一个 <key,value> 这种形式的变量,类似 hashMap。它的 key 是当前线程,value 是 Looper。

下方为对应源码分析:

// 初始化Looper 
    public static void prepare() {
        prepare(true);
    }
    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {  // 如果该线程有 Looper,则抛出一个异常。
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        // 这里使用了 ThreadLocal,保证了一个线程只有一个Looper。
        sThreadLocal.set(new Looper(quitAllowed));
    }
    // ThreadLocal 的 set() 方法
    public void set(T value) {
        Thread t = Thread.currentThread();  // 当前线程
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }
    // ThreadLocal 的 get()方法,
    public T get() {
        Thread t = Thread.currentThread();  // 当前线程
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }

3、Handler 内存泄漏原因?为什么其他的内部分没有过这个问题?

出现内存泄漏的情况:Activity 销毁时,存在待处理的消息。例如:发送一个delay(延迟消息) 2s,在2s内销毁界面。

答:Handler 持有 Activity 的上下文,而 MessageQueue 持有 Message,Message 又持有 Handler;只有当这消息被处理时,才会去销毁对应的 Handler ,Handler 被销毁了,才会去销毁持有的上下文。而其他内部类,例如:RecyclerView 的 ViewHolder,不会产生内存泄漏,因为它没有被其它地方持有该内部类。

// Handler.java
public class Handler {
    // 不管使用什么方法发送消息,都会调到 Handler#enqueueMessage()
    private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
            long uptimeMillis) {
        // 把当前对象赋给msg.target,这样 Message 就持有了 Handler
        msg.target = this;
        msg.workSourceUid = ThreadLocalWorkSource.getUid();
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        // 调用 MessageQueue#enqueueMessage() 往消息队列添加消息。
        return queue.enqueueMessage(msg, uptimeMillis);
    }
}

4、为何主线程可以 new Handler?如果想要在子线程中 new Handler 要做些什么准备?

答:主线程在创建时,系统 ActivityThread 就已经创建好了。在子线程中 new Handler 需想初始化 Looper(Looper.prepare()),并启动 loop(Looper.loop())

// ActivityThread.java
    public static void main(String[] args) {
        // 省略部分代码......
        Looper.prepareMainLooper();
        long startSeq = 0;
        if (args != null) {
            for (int i = args.length - 1; i >= 0; --i) {
                if (args[i] != null && args[i].startsWith(PROC_START_SEQ_IDENT)) {
                    startSeq = Long.parseLong(
                            args[i].substring(PROC_START_SEQ_IDENT.length()));
                }
            }
        }
        ActivityThread thread = new ActivityThread();
        thread.attach(false, startSeq);
        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }
        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }
        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        /// M: ANR Debug Mechanism
        mAnrAppManager.setMessageLogger(Looper.myLooper());
        Looper.loop();
        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

5、子线程中的维护的 looper,消息队列无消息的时候处理方案是什么?有什么用?

答:在适当地方调用 Looper.quitSafely();安全地退出 looper。 等所有剩余的消息处理完毕后立即终止。但是,在 loop 循环终止之前,将不会在收到消息。在要求循环程序退出后,任何向队列发送消息的尝试都将失败。

6、既然可以存在多个 Handler 往 MessageQueue 中添加数据(发消息时,各个handler 可能处于不同的线程),那么它内部是如何确保线程安全的?

答:在 MessageQueue#enqueueMessage、MessageQueue#next() 中的代码块使用了 synchronized 修饰。则也会导致 handler 的 delay 消息的时间不完全的准确。

7、我们使用 Message 时应如何创建它?

答:obtain(),避免了每次去 new ,防止了内存抖动。

8、使用 Handler 的 postDelay 后,消息队列会有什么变化?

答:若此时消息队列为空,则不会立马执行(Delay 消息);当该消息添加进去时,MessageQueue#enqueueMessage 会 调用 nativeWake(mPtr) 唤醒消息队列,就会在 MessageQueue#next() 中,计算等待时间。

9、Looper 死循环为什么不会导致应用卡死(ANR)?

每一个事件都是一个 Message,因为所有事件都在Activity的生命周期里面,而主线程的所有代码都运行在 ActivityThread#main()中的 loop 里面。所以主线程的 loop 不能退出。

主线程唤醒的方式;

1、输入的事件;

2、Looper 添加消息;

输入事件:点击屏幕或按键按下,得到系统响应。

答:ANR是指在5s内没有响应输入事件(例如:按键按下、屏幕触摸),而输入的事件、Looper 添加消息都可以唤醒 Looper 里面的 block。Looper 死循环 与 ANR没有关系。

相关文章
|
1月前
|
消息中间件 存储 Java
Android消息处理机制(Handler+Looper+Message+MessageQueue)
Android消息处理机制(Handler+Looper+Message+MessageQueue)
38 2
|
3月前
|
Ubuntu 开发工具 Android开发
Repo下载AOSP源码:基于ubuntu22.04 环境配置,android-12.0.0_r32
本文介绍了在基于Ubuntu 22.04的环境下配置Python 3.9、安装repo工具、下载和同步AOSP源码包以及处理repo同步错误的详细步骤。
222 0
Repo下载AOSP源码:基于ubuntu22.04 环境配置,android-12.0.0_r32
|
23天前
|
消息中间件 存储 Java
Android面试高频知识点(2) 详解Android消息处理机制(Handler)
Android面试高频知识点(2) 详解Android消息处理机制(Handler)
|
27天前
|
消息中间件 存储 Java
Android面试高频知识点(2) 详解Android消息处理机制(Handler)
Android面试高频知识点(2) 详解Android消息处理机制(Handler)
47 1
|
1月前
|
消息中间件 存储 Java
Android消息处理机制(Handler+Looper+Message+MessageQueue)
Android消息处理机制(Handler+Looper+Message+MessageQueue)
45 2
|
3月前
|
开发工具 git 索引
repo sync 更新源码 android-12.0.0_r34, fatal: 不能重置索引文件至版本 ‘v2.27^0‘。
本文描述了在更新AOSP 12源码时遇到的repo同步错误,并提供了通过手动git pull更新repo工具来解决这一问题的方法。
124 1
|
3月前
|
Android开发 Docker 容器
docker中编译android aosp源码,出现Build sandboxing disabled due to nsjail error
在使用Docker编译Android AOSP源码时,如果遇到"Build sandboxing disabled due to nsjail error"的错误,可以通过在docker run命令中添加`--privileged`参数来解决权限不足的问题。
611 1
|
3月前
|
消息中间件 存储 Java
Android面试高频知识点(2) 详解Android消息处理机制(Handler)
Android 消息处理机制估计都被写烂了,但是依然还是要写一下,因为Android应用程序是通过消息来驱动的,Android某种意义上也可以说成是一个以消息驱动的系统,UI、事件、生命周期都和消息处理机制息息相关,并且消息处理机制在整个Android知识体系中也是尤其重要,在太多的源码分析的文章讲得比较繁琐,很多人对整个消息处理机制依然是懵懵懂懂,这篇文章通过一些问答的模式结合Android主线程(UI线程)的工作原理来讲解,源码注释很全,还有结合流程图,如果你对Android 消息处理机制还不是很理解,我相信只要你静下心来耐心的看,肯定会有不少的收获的。
202 3
Android面试高频知识点(2) 详解Android消息处理机制(Handler)
|
3月前
|
开发工具 uml git
AOSP源码下载方法,解决repo sync错误:android-13.0.0_r82
本文分享了下载AOSP源码的方法,包括如何使用repo工具和处理常见的repo sync错误,以及配置Python环境以确保顺利同步特定版本的AOSP代码。
430 0
AOSP源码下载方法,解决repo sync错误:android-13.0.0_r82
|
3月前
|
Java Android开发 芯片
使用Android Studio导入Android源码:基于全志H713 AOSP,方便解决编译、编码问题
本文介绍了如何将基于全志H713芯片的AOSP Android源码导入Android Studio以解决编译和编码问题,通过操作步骤的详细说明,展示了在Android Studio中利用代码提示和补全功能快速定位并修复编译错误的方法。
132 0
使用Android Studio导入Android源码:基于全志H713 AOSP,方便解决编译、编码问题