大数据技术之Sqoop1

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
简介: 大数据技术之Sqoop

第1章 Sqoop简介

Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql...)间进行数据的传递,可以将一个关系型数据库(例如: MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。


Sqoop项目开始于2009年,最早是作为Hadoop的一个第三方模块存在,后来为了让使用者能够快速部署,也为了让开发人员能够更快速的迭代开发,Sqoop独立成为一个Apache项目。


Sqoop2的最新版本是1.99.7。请注意,2与1不兼容,且特征不完整,它并不打算用于生产部署。


第2章Sqoop原理

将导入或导出命令翻译成mapreduce程序来实现

在翻译出的mapreduce中主要是对inputformat和outputformat进行定制


第3章Sqoop安装

安装Sqoop的前提是已经具备Java和Hadoop的环境。

3.1 下载并解压

1) 下载地址:http://mirrors.hust.edu.cn/apache/sqoop/1.4.6/


2) 上传安装包sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz到虚拟机中


3) 解压sqoop安装包到指定目录,如:


$ tar -zxf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz -C /opt/module/


3.2 修改配置文件

Sqoop的配置文件与大多数大数据框架类似,在sqoop根目录下的conf目录中。

1) 重命名配置文件

$ mv sqoop-env-template.sh sqoop-env.sh

2) 修改配置文件

sqoop-env.sh

export HADOOP_COMMON_HOME=/opt/module/hadoop-2.7.2
export HADOOP_MAPRED_HOME=/opt/module/hadoop-2.7.2
export HIVE_HOME=/opt/module/hive
export ZOOKEEPER_HOME=/opt/module/zookeeper-3.4.10
export ZOOCFGDIR=/opt/module/zookeeper-3.4.10
export HBASE_HOME=/opt/module/hbase

3.3 拷贝JDBC驱动

拷贝jdbc驱动到sqoop的lib目录下,如:

$ cp mysql-connector-java-5.1.27-bin.jar /opt/module/sqoop-1.4.6.bin__hadoop-2.0.4-alpha/lib/

3.4 验证Sqoop

我们可以通过某一个command来验证sqoop配置是否正确:

$ bin/sqoop help

出现一些Warning警告(警告信息已省略),并伴随着帮助命令的输出:

Available commands:
  codegen            Generate code to interact with database records
  create-hive-table     Import a table definition into Hive
  eval               Evaluate a SQL statement and display the results
  export             Export an HDFS directory to a database table
  help               List available commands
  import             Import a table from a database to HDFS
  import-all-tables     Import tables from a database to HDFS
  import-mainframe    Import datasets from a mainframe server to HDFS
  job                Work with saved jobs
  list-databases        List available databases on a server
  list-tables           List available tables in a database
  merge              Merge results of incremental imports
  metastore           Run a standalone Sqoop metastore
  version            Display version information

3.5 测试Sqoop是否能够成功连接数据库

$ bin/sqoop list-databases --connect jdbc:mysql://hadoop102:3306/ --username root --password 000000

出现如下输出:

information_schema
metastore
mysql
oozie
performance_schema

第4章Sqoop的简单使用案例

4.1 导入数据

在Sqoop中,“导入”概念指:从非大数据集群(RDBMS)向大数据集群(HDFS,HIVE,HBASE)中传输数据,叫做:导入,即使用import关键字

4.1.1 RDBMS到HDFS

1) 确定Mysql服务开启正常

2) 在Mysql中新建一张表并插入一些数据

$ mysql -uroot -p000000
mysql> create database company;
mysql> create table company.staff(id int(4) primary key not null auto_increment, name varchar(255), sex varchar(255));
mysql> insert into company.staff(name, sex) values('Thomas', 'Male');
mysql> insert into company.staff(name, sex) values('Catalina', 'FeMale');

3) 导入数据

(1)全部导入

$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--table staff \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t"


骚戴理解:全部导入就是关系型数据库整个表导入到hdfs中,上面每一行尾\是用来换行的,如果没有这个按回车就会当做命令执行,上面的主要分为两大块,第一块是mysql的配置,第二块是hdfs的配置,其中delete-target-dir的意思是如果有target-dir配置的目录就删除这个目录,这个慎用!fields-terminated-by指定分隔符。


--num-mappers 是在使用 Hadoop MapReduce 进行数据处理时的一个参数,它表示要启动几个 Map 任务来处理输入数据。具体来说,--num-mappers 参数用于指定 MapReduce 作业中 Mapper 的数量。这个参数的设置会影响作业的并行度和运行时间。通常情况下,建议将该参数设置为输入文的总大小除以 Hadoop 集群中可用的计算资源数量,以实现最优的并行处理效果。


(2)查询导入

$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--query 'select name,sex from staff where id <=1 and $CONDITIONS;'

骚戴理解:注意上面最后一句where后面拼接了and $CONDITIONS,必须要拼接and $CONDITIONS;不然会报错:must contain '$CONDITIONS' in WHERE clause.


sqoop的查询导入为什么要 $CONDITIONS?


$CONDITIONS是一个占位符,在使用Sqoop进行查询导入时,可以使用 $CONDITIONS 来指定查询的条件。这个参数的作用是动态地生成一个 WHERE 子句,并将其添加到 SELECT 语句中。


$CONDITIONS 可以让我们在每次调用 Sqoop 命令时传递不同的查询条件,而不必修改 Sqoop 命令本身。这种灵活性使得在数据源发生变化时能够轻松地更新导入命令。


例如,假设我们希望从数据库中导入销售额大于 1000 的数据。使用 $CONDITIONS 就可以很容易地实现这一点,只需在 Sqoop 命令中指定 --where 参数并设置为 "$CONDITIONS AND sales > 1000" 即可。每次运行 Sqoop 命令时,$CONDITIONS 将被替换为适当的查询条件,从而过滤出我们需要的数据。


如果query后使用的是双引号,则$CONDITIONS前必须加转移符,防止shell识别为自己的变量。

(3)导入指定列

$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--columns id,sex \
--table staff


提示:columns中如果涉及到多列,用逗号分隔,分隔时不要添加空格

(4)使用sqoop关键字筛选查询导入数据

$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--table staff \
--where "id=1"

骚戴理解:这个跟上面查询导入的--query 'select name,sex from staff where id <=1 and $CONDITIONS;'的区别就是查询导入可以指定字段和条件,而这个where只能指定条件,但是可以和


--columns一起使用,注意--query和--where不能一起使用!


4.1.2 RDBMS到Hive

$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--table staff \
--num-mappers 1 \
--hive-import \
--fields-terminated-by "\t" \
--hive-overwrite \
--hive-table staff_hive

骚戴理解:该过程分为两步,第一步将数据导入到HDFS,第二步将导入到HDFS的数据迁移到Hive仓库,第一步默认的临时目录是/user/atguigu/表名,如果hive中没有--hive-table参数指定的表就会自动新建一个


--hive-overwrite 是在使用 Apache Hive 进行数据导入时的一个参数,它表示当向 Hive 表中导入数据时,如果表中已经存在同名的数据,是否覆盖已有数据。具体来说,--hive-overwrite 参数用于指定将新数据覆盖原有数据的方式进行数据导入。如果不使用该参数,则默认是将新数据追加到原有数据之后。


4.1.3 RDBMS到Hbase

$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--table company \
--columns "id,name,sex" \
--column-family "info" \
--hbase-create-table \
--hbase-row-key "id" \
--hbase-table "hbase_company" \
--num-mappers 1 \
--split-by id


骚戴理解:sqoop的--split-by用于指定一个列作为数据分割的依据,将大型数据集拆分成多个小块进行并行处理。这有助于提高数据传输和导入的效率。--hbase-create-table参数指的如果hbase没有表就自动创建hbase中的表,但是由于版本不兼容,会报错(sqoop1.4.6只支持HBase1.0.1之前的版本的自动创建HBase表的功能)


解决方案:手动创建HBase表

hbase> create 'hbase_company,'info'

在HBase中scan这张表得到如下内容

hbase> scan ‘hbase_company’


4.2、导出数据

在Sqoop中,“导出”概念指:从大数据集群(HDFS,HIVE,HBASE)向非大数据集群(RDBMS)中传输数据,叫做:导出,即使用export关键字。

4.2.1 HIVE/HDFS到RDBMS

$ bin/sqoop export \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--table staff \
--num-mappers 1 \
--export-dir /user/hive/warehouse/staff_hive \
--input-fields-terminated-by "\t"

骚戴理解:sqoop的--export-dir参数用于将数据从Hadoop分布式文件系统(如HDFS)导出到关系型数据库中。它指定了包含要导出数据的HDFS目录路径。sqoop的--input-fields-terminated-by参数用于指定输入数据文件中字段之间的分隔符。它可以是一个字符或一个字符串,并且默认为逗号“,”。这个参数在导入数据时非常有用,因为它告诉sqoop如何解析源数据文件。Mysql中如果表不存在,不会自动创建


4.3 脚本打包

使用opt格式的文件打包sqoop命令,然后执行

1) 创建一个.opt文件

$ mkdir opt
$ touch opt/job_HDFS2RDBMS.opt

2) 编写sqoop脚本


$ vi opt/job_HDFS2RDBMS.opt
export
--connect jdbc:mysql://hadoop102:3306/company
--username root
--password 000000
--table staff
--num-mappers 1
--export-dir /user/hive/warehouse/staff_hive
--input-fields-terminated-by "\t"


3) 执行该脚本

$ bin/sqoop --options-file opt/job_HDFS2RDBMS.opt

第5章Sqoop一些常用命令及参数

5.1 常用命令列举

这里给大家列出来了一部分Sqoop操作时的常用参数,以供参考,需要深入学习的可以参看对应类的源代码。

1686550463914.png1686550469667.png

5.2 命令&参数详解

刚才列举了一些Sqoop的常用命令,对于不同的命令,有不同的参数,让我们来一一列举说明。

首先来我们来介绍一下公用的参数,所谓公用参数,就是大多数命令都支持的参数。


5.2.1 公用参数:数据库连接

1686550505310.png

5.2.2 公用参数:import

1686550522512.png

5.2.3 公用参数:export

1686550537135.png

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
16天前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
82 4
|
2月前
|
存储 分布式计算 Hadoop
Hadoop框架解析:大数据处理的核心技术
组件是对数据和方法的封装,从用户角度看是实现特定功能的独立黑盒子,能够有效完成任务。组件,也常被称作封装体,是对数据和方法的简洁封装形式。从用户的角度来看,它就像是一个实现了特定功能的黑盒子,具备输入和输出接口,能够独立完成某些任务。
|
2月前
|
分布式计算 关系型数据库 MySQL
【赵渝强老师】大数据交换引擎Sqoop
Sqoop是一款开源工具,用于在Hadoop与传统数据库如Oracle、MySQL之间传输数据。它基于MapReduce实现,支持数据导入导出、生成Java类及Hive表结构等操作,适用于大数据处理场景。
【赵渝强老师】大数据交换引擎Sqoop
|
22天前
|
SQL 分布式计算 大数据
我与ODPS的十年技术共生之路
ODPS十年相伴,从初识的分布式计算到共生进化,突破架构边界,推动数据价值深挖。其湖仓一体、隐私计算与Serverless能力,助力企业降本增效,赋能政务与商业场景,成为数字化转型的“数字神经系统”。
|
2月前
|
数据采集 自然语言处理 分布式计算
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
|
2月前
|
存储 分布式计算 算法
Java 大视界 -- Java 大数据在智能教育在线考试监考与作弊检测中的技术创新(193)
本文探讨了Java大数据技术在智能教育在线考试监考与作弊检测中的创新应用。随着在线考试的普及,作弊问题日益突出,传统监考方式难以应对。通过Java大数据技术,可实现考生行为分析、图像识别等多维度监控,提升作弊检测的准确性与效率。结合Hadoop与Spark等技术,系统能实时处理海量数据,构建智能监考体系,保障考试公平性,推动教育评价体系的数字化转型。
|
2月前
|
SQL 缓存 监控
大数据之路:阿里巴巴大数据实践——实时技术与数据服务
实时技术通过流式架构实现数据的实时采集、处理与存储,支持高并发、低延迟的数据服务。架构涵盖数据分层、多流关联,结合Flink、Kafka等技术实现高效流计算。数据服务提供统一接口,支持SQL查询、数据推送与定时任务,保障数据实时性与可靠性。
|
4月前
|
人工智能 分布式计算 大数据
MCP、MaxFrame与大数据技术全景解析
本文介绍了 MCP 协议、MaxFrame 分布式计算框架以及大数据基础设施建设的相关内容。MCP(Model Context Protocol)是一种开源协议,旨在解决 AI 大模型与外部数据源及工具的集成问题,被比喻为大模型的“USB 接口”,通过统一交互方式降低开发复杂度。其核心架构包括 Client、Server、Tool 和 Schema 四个关键概念,并在百炼平台中得到实践应用。MaxFrame 是基于 Python 的高性能分布式计算引擎,支持多模态数据处理与 AI 集成,结合 MaxCompute 提供端到端的数据处理能力。
|
传感器 分布式计算 安全
Java 大视界 -- Java 大数据在智能安防入侵检测系统中的多源数据融合与分析技术(171)
本文围绕 Java 大数据在智能安防入侵检测系统中的应用展开,剖析系统现状与挑战,阐释多源数据融合及分析技术,结合案例与代码给出实操方案,提升入侵检测效能。
Java 大视界 -- Java 大数据在智慧文旅虚拟场景构建与沉浸式体验增强中的技术支撑(168)
本文围绕 Java 大数据在智慧文旅领域的应用展开,系统阐述了数据采集、3D 建模、游客行为分析等核心技术的原理与实现,结合实际案例,全方位展示了 Java 大数据在推动智慧文旅发展中的显著价值。

热门文章

最新文章