大话数据结构--队列的存储结构

简介: 大话数据结构--队列的存储结构

前言


废话不多,数据结构必须学! 每天更新一章,一篇写不完的话会分成两篇来写~

资料获取

image.png


4.11队列顺序存储的不足


我们假设一个队列有n个元素,则顺序存储的队列需建立一个大于n的数组,并把队列的所有元素存储在数组的前n个单元,数组下标为0的一端即是队头。所谓的入队列操作,其实就是在队尾追加一个元素,不需要移动任何元素,因此时间复杂度为O(1)

image.png

与栈不同的是,队列元素的出列是在队头,即下标为0的位置,那也就意味着, 队列中的所有元素都得向前移动,以保证队列的队头,也就是下标为0的位置不为 空,此时时间复杂度为0(n)

image.png

在现实中也是如此,一群人在排队买票,前面的人买好了离开,后面的人就要全部向前一步,补上空位,似乎这也没什么不好。

那能不能出队列的时候,后面的元素不存储再数值的前n个单元这一条件,出队列的性能就会大大增加。也就是说,对头不需要一定在下标为0的位置

image.png

为了避免当只有一个元素时,队头和队尾重合使处理变得麻烦,所以引入两个指针,front 指针指向队头元素,rear 指针指向队尾元素的下一-个位置,这样当front等于rear时,此队列不是还剩-一个元素,而是空队列。

假设是长度为5的数组,初始状态,front 与rear指针均指向下标为0的位置。然后入队a1、a2、a3、 a4, front 指针依然指向下标为0位置,而rear指针指向下标为4的位置

image.png

出队a1、a2, 则front指针指向下标为2的位置,rear 不变,再入队as,此时front指针不变,rear 指针移动到数组之外。嗯?数组之外,那将是哪里?

image.png

问题还不止于此。假设这个队列的总个数不超过5个,但目前如果接着入队的话,因数组末尾元素已经占用,再向后加,就会产生数组越界的错误,可实际上,我们的队列在下标为0和1的地方还是空闲的。我们把这种现象叫做 “ 假溢出”。

现实当中,你上了公交车,发现前排有两个空座位,而后排所有座位都已经坐满,你会怎么做?立马下车,并对自己说,后面没座了,我等下一辆?没有这么笨的人,前面有座位,当然也是可以坐的,除非坐满了,才会考虑下一辆。


4.12 队列的链式存储结构及实现


队列的链式存储结构,其实就是线性表的单链表,只不过它只能尾进头出而已,简称为链队列。为了操作上的方便,将队头指针指向链队列的头结点,而队尾指针指向终端结点

image.png

空队列时,front 和rear都指向头结点

image.png

链队列的结构为:

typedef int QElemType;  /* QElemType 类型根据实际情况而定,这里假设为int */
 typedef struct QNode    /*结点结构*/
 {
     QElemType data;
     struct QNode *next;
 }QNode, *QueuePtr;
 typedef struct  /*队列的链表结构*/
 {
     QueuePtr front,rear;    /* 队头、队尾指针*/
 }LinkQueue;


4.12.1队列的链式存储结构一入队操作


入队操作时,其实就是在链表尾部插入结点

image.png


/*插入元素e为Q的新的队尾元素*/
 Status EnQueue ( LinkQueue *Q,QElemType e)
 {
     QueuePtr s=( QueuePtr ) malloc (sizeof (QNode) ) ;
     if(!s)/*存储分配失败*/
         exit ( OVERFLOW) ;
     s->data=e;
     s->next-NULL;
     Q->rear->next=s;    /*把拥有元素e新结点s赋值给原队尾结点的后继,*/
     Q->rear=s;          /* 把当前的s 设置为队尾结点,rear指向s,见上图中②*/
     return OK;
 }


4.12.2队列的链式存储结构一出队操作


出队操作时,就是头结点的后继结点出队,将头结点的后继改为它后面的结点,若链表除头结点外只剩-一个元素时,则需将rear指向头结点

image.png

对于循环队列与链队列的比较,可以从两方面来考虑,从时间上,其实它们的基本操作都是常数时间,即都为0(1)的, 不过循环队列是事先申请好空间,使用期间不释放,而对于链队列,每次申请和释放结点也会存在一-些时间开销,如果入队出队频繁,则两者还是有细微差异。对于空间上来说,循环队列必须有一个固定的长度,所以就有了存储元素个数和空间浪费的问题。而链队列不存在这个问题,尽管它需要一个指针域,会产生一些空间 上的开销,但也可以接受。所以在空间上,链队列更加灵活

总的来说,在可以确定队列长度最大值的情况下,建议用循环队列,如果你无法预估队列的长度时,则用链队列。


4.13总结回顾


栈(stack) 是限定仅在表尾进行插入和删除操作的线性表。

队列(queue) 是只允许在一端进行插入操作, 而在另一端进行删除操作的线性表

它们均可以用线性表的顺序存储结构来实现,但都存在着顺序存储的一些弊端。因此它们各自有各自的技巧来解决这个问题。

对于栈来说,如果是两个相同数据类型的栈,则可以用数组的两端作栈底的方法来让两个栈共享数据,这就可以最大化地利用数组的空间。

对于队列来说,为了避免数组插入和删除时需要移动数据,于是就引入了循环队列,使得队头和队尾可以在数组中循环变化。解决了移动数据的时间损耗,使得本来插入和删除是0(n)的时间复杂度变成了0(1)。 它们也都可以通过链式存储结构来实现,实现原则上与线性表基本相同

image.png



相关文章
|
3月前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
149 16
|
4月前
探索顺序结构:栈的实现方式
探索顺序结构:栈的实现方式
|
4月前
|
存储 算法
【数据结构】二叉树——顺序结构——堆及其实现
【数据结构】二叉树——顺序结构——堆及其实现
|
4月前
|
存储 编译器 C++
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
|
5月前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
5月前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
6月前
|
存储 算法 测试技术
【初阶数据结构篇】实现顺序结构二叉树(堆的实现方法)
注意传过去的参数是插入的位置,即插入前的size,在调整完后再将size++
43 0
|
6月前
|
存储 缓存 算法
深入解析B树:数据结构、存储结构与算法优势
深入解析B树:数据结构、存储结构与算法优势
|
6月前
|
存储
数据结构中的 线性结构和非线性结构
这篇文章介绍了数据结构中的线性结构和非线性结构,其中线性结构包括顺序存储结构和链式存储结构,如数组、队列、链表和栈;非线性结构包括图结构、树结构、二维数组、广义表和多维数组。
|
7月前
|
存储
【数据结构】树和二叉树的概念及结构
数据结构——树和二叉树的概念及结构
115 3
【数据结构】树和二叉树的概念及结构

热门文章

最新文章