我爱啃书--算法时间复杂度(大话数据结构)

简介: 我爱啃书--算法时间复杂度(大话数据结构)

前言


废话不多,数据结构必须学! 每天更新一章,一篇写不完的话会分成两篇来写~

资料获取

image.png


算法时间复杂度


在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定 T( n )的数量级。算法的时间复杂度,也就是算法的时间量度,记作: T (n)= O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。

这样用大写0( )来体现算法时间复杂度的记法,我们称之为大0记法。

一般情况下, 随着n的增大,T(n)增长最慢的算法为最优算法。

显然,由此算法时间复杂度的定义可知,我们的三个求和算法的时间复杂度分别为O(n), O(1), O(n2)。我们分别给它们取了非官方的名称,0(1)叫常数阶、0(n)叫线性阶、0(n2)叫平方阶,当然,还有其他的一些阶,之后会介绍


推导大0阶方法


那么如何分析一个算法的时间复杂度呢?即如何推导大0阶呢?

推导大O阶:

1.用常数1取代运行时间中的所有加法常数

2.在修改后的运行次数函数中,只保留最高阶项

3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。

得到的结果就是大O阶

哈,仿佛是得到了游戏攻略一样,我们好像已经得到了一个推导算法时间复杂度的万能公式。可事实上,分析一个算法的时间复杂度,没有这么简单,还需要多.看几个例子


常数阶


首先顺序结构的时间复杂度。下面这个算法,也就是刚才的第二种算法(高斯算法),为什么时间复杂度不是0(3),而是0(1)。

int sum = 0,n = 100;  /*执行一次*/
sum =(1+n)*n/2; /*执行一次*/
printf ( "8d", sum) ; /*执行一次*/

这个算法的运行次数函数是f (n) =3。 根据我们推导大0阶的方法,第一步就是把常数项3改为1。在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度为O(1)

如果有多条sum,那么它的时间复杂度依旧是O(1),也叫常数阶

注意:不管这个常数是多少,。我们都记作O(),而不能是O(3). O(12)等其他任何数字


线性阶


线性阶的循环结构会复杂很多。要确定某个算法的阶次,我们常常需要确定某个特定语句或某个语句集运行的次数。因此,我们要分析算法的复杂度,关键就是要分析循环结构的运行情况。

下面这段代码,它的循环的时间复杂度为O(n), 因为循环体中的代码须要执行n次。

#include <stdio.h>
void main()
{
    int sum;
    for (int i = 0; i < n; i++)
    {
        sum += i;
    }
    printf("%d",sum);
}


对数阶


int count=1;
while(count< n)
{
count = count * 2;
}

由于每次count乘以2之后,就距离n更近了一分。也就是说,有多少个2相乘后大于n,则会退出循环。由2^x=n 得到x=log2n。 所以这个循环的时间复杂度为O(logn)。


平方阶


下面例子是一个循环嵌套,它的内循环刚才我们已经分析过,时间复杂度为 O(n)。

for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
            /* code */
        }
    }

而对于外层的循环,不过是内部这个时间复杂度为O(n)的语句,再循环n次。所以这段代码的时间复杂度为0(n^2)。

下面这个循环嵌套,它的时间复杂度是多少呢?

for (int i = 0; i < n; i++)
    {
        for (j = i; j < n; j++)
        {
            /* code */
        }
    }

image.png

用我们推导大0阶的方法,第一条,没有加法常数不予考虑;第二条,只保留最高阶项,因此保留n2/2; 第三条,去除这个项相乘的常数,也就是去除1/2, 最终这段代码的时间复杂度为O(n^2)。


方法调用的时间复杂度分析


for (int i = 0; i < n; i++)    {        func(i)            }void func(int count){ printf(count);}

函数体是打印这个参数。其实这很好理解,function 函数的时间复杂度是O(1)。所以整体的时间复杂度为O(n)。

如果调用函数的内容有个循环,那么时间复杂度为O(n^2)

image.png

image.png

根据大O阶的方法,代码的时间复杂度也是O(n^2)


常见的时间复杂度


image.png

image.png

n的n方阶时间复杂度耗费的时间是最多的,最小的是常数阶


最坏情况与平均情况


找东西有运气好的时候,也有怎么也找不到的情况。但在现实中,通常我们碰到的绝大多数既不是最好的也不是最坏的,所以算下来是平均情况居多。

算法的分析也是类似,我们查找-一个有n个随机数字数组中的某个数字,最好的情况是第一一个数字就是,那么算法的时间复杂度为0(1),但也有可能这个数字就在最后一个位置上待着,那么算法的时间复杂度就是0[n),这是最坏的一种情况了。

最坏情况运行时间是一种保证, 那就是运行时间将不会再坏了。在应用中,这是一种最重要的需求, 通常,除非特别指定,我们提到的运行时间都是最坏情况的运行时间。

平均运行时间也就是从概率的角度看,这个数字在每一个位置的可能性是相同的,所以平均的查找时间为n/2次后发现这个目标元素。

平均运行时间是所有情况中最有意义的,因为它是期望的运行时间。也就是说,我们运行一段程序代码时,是希望看到平均运行时间的。可现实中,平均运行时间很难通过分析得到,一般都是通过运行一定数量的实验数据后估算出来的。 对算法的分析,一种方法是计算所有情况的平均值,这种时间复杂度的计算方法称为平均时间复杂度。另一种方法是计算最坏情况下的时间复杂度,这种方法称为最坏时间复杂度。一般在没有特殊说明的情况下, 都是指最坏时间复杂度。


算法空间复杂度


算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式记作: S(n)= Of(n), 其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数。


小例子理解


我们在写代码时,完全可以用空间来换取时间,比如说,要判断某某年是不是闰年,你可能会花一-点心思写 了一一个算法,而且由于是-一个算法,也就意味着,每次给一个年份,都是要通过计算得到是否是闰年的结果。还有另-“个办法就是,事先建立一个有2 050个元素的数组(年数略比现实多-点),然后把所有的年份按下标的数字对应,如果是闰年,此数组项的值就是1,如果不是值为0。这样,所谓的判断某一 年是否是闰年,就变成了查找这个数组的某一项的值是多 少的问题。此时,我们的运算是最小化了,但是硬盘上或者内存中需要存储这2050个0和1。这是通过一笔空间上的开销来换取计算时间的小技巧


总结


数据结构和算法不分家

算法的定义:算法是解决特定问题求解步骤的描述,在计算机中为指令的有限序列,并且每条指令表示一个或多个操作。

算法的特性:有穷性、确定性、可行性、输入、输出。

算法的设计的要求:正确性、可读性、健壮性、高效率和低存储量需求。

算法特性与算法设计容易混,需要对比记忆。

算法的度量方法:事后统计方法(不科学、不准确)、事前分析估算方法。

推导大0阶

用常数1取代运行时间中的所有加法常数。

在修改后的运行次数函数中,只保留最高阶项。

如果最高阶项存在且不是1,则去除与这个项相乘的常数。

得到的结果就是大0阶。



相关文章
|
16天前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
79 29
|
16天前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
72 25
|
16天前
|
存储 人工智能 算法
C 408—《数据结构》算法题基础篇—数组(通俗易懂)
408考研——《数据结构》算法题基础篇之数组。(408算法题的入门)
58 23
|
1月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
51 2
|
2月前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
70 20
|
3月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
91 1
|
3月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
99 1
|
3月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
2天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
29 15