我爱啃书--算法时间复杂度(大话数据结构)

简介: 我爱啃书--算法时间复杂度(大话数据结构)

前言


废话不多,数据结构必须学! 每天更新一章,一篇写不完的话会分成两篇来写~

资料获取

image.png


算法时间复杂度


在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定 T( n )的数量级。算法的时间复杂度,也就是算法的时间量度,记作: T (n)= O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。

这样用大写0( )来体现算法时间复杂度的记法,我们称之为大0记法。

一般情况下, 随着n的增大,T(n)增长最慢的算法为最优算法。

显然,由此算法时间复杂度的定义可知,我们的三个求和算法的时间复杂度分别为O(n), O(1), O(n2)。我们分别给它们取了非官方的名称,0(1)叫常数阶、0(n)叫线性阶、0(n2)叫平方阶,当然,还有其他的一些阶,之后会介绍


推导大0阶方法


那么如何分析一个算法的时间复杂度呢?即如何推导大0阶呢?

推导大O阶:

1.用常数1取代运行时间中的所有加法常数

2.在修改后的运行次数函数中,只保留最高阶项

3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。

得到的结果就是大O阶

哈,仿佛是得到了游戏攻略一样,我们好像已经得到了一个推导算法时间复杂度的万能公式。可事实上,分析一个算法的时间复杂度,没有这么简单,还需要多.看几个例子


常数阶


首先顺序结构的时间复杂度。下面这个算法,也就是刚才的第二种算法(高斯算法),为什么时间复杂度不是0(3),而是0(1)。

int sum = 0,n = 100;  /*执行一次*/
sum =(1+n)*n/2; /*执行一次*/
printf ( "8d", sum) ; /*执行一次*/

这个算法的运行次数函数是f (n) =3。 根据我们推导大0阶的方法,第一步就是把常数项3改为1。在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度为O(1)

如果有多条sum,那么它的时间复杂度依旧是O(1),也叫常数阶

注意:不管这个常数是多少,。我们都记作O(),而不能是O(3). O(12)等其他任何数字


线性阶


线性阶的循环结构会复杂很多。要确定某个算法的阶次,我们常常需要确定某个特定语句或某个语句集运行的次数。因此,我们要分析算法的复杂度,关键就是要分析循环结构的运行情况。

下面这段代码,它的循环的时间复杂度为O(n), 因为循环体中的代码须要执行n次。

#include <stdio.h>
void main()
{
    int sum;
    for (int i = 0; i < n; i++)
    {
        sum += i;
    }
    printf("%d",sum);
}


对数阶


int count=1;
while(count< n)
{
count = count * 2;
}

由于每次count乘以2之后,就距离n更近了一分。也就是说,有多少个2相乘后大于n,则会退出循环。由2^x=n 得到x=log2n。 所以这个循环的时间复杂度为O(logn)。


平方阶


下面例子是一个循环嵌套,它的内循环刚才我们已经分析过,时间复杂度为 O(n)。

for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
            /* code */
        }
    }

而对于外层的循环,不过是内部这个时间复杂度为O(n)的语句,再循环n次。所以这段代码的时间复杂度为0(n^2)。

下面这个循环嵌套,它的时间复杂度是多少呢?

for (int i = 0; i < n; i++)
    {
        for (j = i; j < n; j++)
        {
            /* code */
        }
    }

image.png

用我们推导大0阶的方法,第一条,没有加法常数不予考虑;第二条,只保留最高阶项,因此保留n2/2; 第三条,去除这个项相乘的常数,也就是去除1/2, 最终这段代码的时间复杂度为O(n^2)。


方法调用的时间复杂度分析


for (int i = 0; i < n; i++)    {        func(i)            }void func(int count){ printf(count);}

函数体是打印这个参数。其实这很好理解,function 函数的时间复杂度是O(1)。所以整体的时间复杂度为O(n)。

如果调用函数的内容有个循环,那么时间复杂度为O(n^2)

image.png

image.png

根据大O阶的方法,代码的时间复杂度也是O(n^2)


常见的时间复杂度


image.png

image.png

n的n方阶时间复杂度耗费的时间是最多的,最小的是常数阶


最坏情况与平均情况


找东西有运气好的时候,也有怎么也找不到的情况。但在现实中,通常我们碰到的绝大多数既不是最好的也不是最坏的,所以算下来是平均情况居多。

算法的分析也是类似,我们查找-一个有n个随机数字数组中的某个数字,最好的情况是第一一个数字就是,那么算法的时间复杂度为0(1),但也有可能这个数字就在最后一个位置上待着,那么算法的时间复杂度就是0[n),这是最坏的一种情况了。

最坏情况运行时间是一种保证, 那就是运行时间将不会再坏了。在应用中,这是一种最重要的需求, 通常,除非特别指定,我们提到的运行时间都是最坏情况的运行时间。

平均运行时间也就是从概率的角度看,这个数字在每一个位置的可能性是相同的,所以平均的查找时间为n/2次后发现这个目标元素。

平均运行时间是所有情况中最有意义的,因为它是期望的运行时间。也就是说,我们运行一段程序代码时,是希望看到平均运行时间的。可现实中,平均运行时间很难通过分析得到,一般都是通过运行一定数量的实验数据后估算出来的。 对算法的分析,一种方法是计算所有情况的平均值,这种时间复杂度的计算方法称为平均时间复杂度。另一种方法是计算最坏情况下的时间复杂度,这种方法称为最坏时间复杂度。一般在没有特殊说明的情况下, 都是指最坏时间复杂度。


算法空间复杂度


算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式记作: S(n)= Of(n), 其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数。


小例子理解


我们在写代码时,完全可以用空间来换取时间,比如说,要判断某某年是不是闰年,你可能会花一-点心思写 了一一个算法,而且由于是-一个算法,也就意味着,每次给一个年份,都是要通过计算得到是否是闰年的结果。还有另-“个办法就是,事先建立一个有2 050个元素的数组(年数略比现实多-点),然后把所有的年份按下标的数字对应,如果是闰年,此数组项的值就是1,如果不是值为0。这样,所谓的判断某一 年是否是闰年,就变成了查找这个数组的某一项的值是多 少的问题。此时,我们的运算是最小化了,但是硬盘上或者内存中需要存储这2050个0和1。这是通过一笔空间上的开销来换取计算时间的小技巧


总结


数据结构和算法不分家

算法的定义:算法是解决特定问题求解步骤的描述,在计算机中为指令的有限序列,并且每条指令表示一个或多个操作。

算法的特性:有穷性、确定性、可行性、输入、输出。

算法的设计的要求:正确性、可读性、健壮性、高效率和低存储量需求。

算法特性与算法设计容易混,需要对比记忆。

算法的度量方法:事后统计方法(不科学、不准确)、事前分析估算方法。

推导大0阶

用常数1取代运行时间中的所有加法常数。

在修改后的运行次数函数中,只保留最高阶项。

如果最高阶项存在且不是1,则去除与这个项相乘的常数。

得到的结果就是大0阶。



相关文章
|
10天前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
42 9
 算法系列之数据结构-二叉树
|
8天前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
33 3
 算法系列之数据结构-Huffman树
|
10天前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
54 22
|
1月前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
95 29
|
1月前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
107 25
|
1月前
|
存储 人工智能 算法
C 408—《数据结构》算法题基础篇—数组(通俗易懂)
408考研——《数据结构》算法题基础篇之数组。(408算法题的入门)
77 23
|
3月前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
87 20
|
2月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
61 2
|
4月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
66 1
|
2月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
164 77