Mysql使用left join连表查询时,因连接条件未加索引导致查询很慢

简介: Mysql使用left join连表查询时,因连接条件未加索引导致查询很慢

背景

最近一个后台功能列表,业务人员反馈查询和导出速度非常慢。

通过定位发现列表查询和数据导出都是使用的同样的一个连表查询SQL。

这个功能刚上线不久,起初查询和导出速度都是蛮快的,把这个SQL放到测试环境也是挺快的。

对比了一下测试环境和生产环境相关表结构都是一样的,之后我们把目光放在了数量的问题上面,但是几张关联表的数据量也不大,不到1w的数据量为何会这么慢呢。

排查

通过Explain发现,连表查询中的table c没有使用到索引且是全表扫描。另外在Extra中特别说明了Using join buffer (Block Nested Loop)。

其中table c中的filtered=100% 表示右表没有应用索引下推(ICP),因为where条件没有索引。

另外Using join buffer (Block Nested Loop)是因为右表没有在join列上建索引导致嵌套循环。

解决

通过对table c中的连接字段content_id和user_no分别加上了索引,

加上索引后的执行计划如下

总结

需要注意:参与join的表,需要在连接条件上建索引。

知识延伸

MySQL使用嵌套循环算法或其变种来进行表之间的连接。

5.5版本之前,MySQL只支持一种表间关联方式,也就是嵌套循环(Nested Loop)。如果关联的表数据量很大,那么join关联的时间会很长。在5.5版本以后,MySQL引入了BNL算法来优化嵌套循环。

1.嵌套循环连接算法(Nested-Loop Join Algorithm)

一个简单的嵌套循环连接(NLJ)算法从循环中的第一个表中逐行读取一行,将每行传递给处理连接中下一个表的嵌套循环。 这个过程会重复多次,因为还有剩余的表被连接。

假定要使用以下连接类型执行三个表t1,t2和t3之间的连接:

Table   Join Type
t1      range
t2      ref
t3      ALL

如果使用一个简单的NLJ算法,连接就像这样处理:

for(row_1 in table_1){
    for(row_2 in table_2){
        if(row_1,row_2满足join条件){
            ...
            for(row_n in table_n){
                if(row_1,row_2...row_n都满足join条件){
                    把row_1,row_2...row_n的join结果加到结果集
                }
            }    
      }       

如图所示

 

这种算法缺陷也很明显,随着join表数量的增加,计算量呈指数上升。如果其中出现了一张数据量很大的表,对整个过程的效率也影响很大。

于是,mysql5.5对这个算法进行了优化,新增了Index Nested-loop Join,Block Nested-loop Join。

2.索引嵌套循环连接算法(Index Nested-loop Join Algorithm)

Index Nested-loop Join是针对有索引的情况,而Block Nested-loop Join是针对没有命中索引的情况。

 

由于索引的效率要比逐条循环效率高,所以当使用索引联表时,能大大加快查询速度,但是索引也不是万能的,如果你需要取索引以外的字段,那么依旧需要回到表中查出相应的数据。

3.块嵌套循环连接算法(Block Nested-Loop Join Algorithm)

Block Nested-loop Join 块嵌套循环(BNL)连接算法使用在外部循环中读取的行的缓冲来减少必须读取内部循环中的表的次数。

举个简单的例子:外层循环结果集有1000行数据,使用NLJ算法需要扫描内层表1000次,但如果使用BNL算法,则先取出外层表结果集的100行存放到join buffer, 然后用内层表的每一行数据去和这100行结果集做比较,可以一次性与100行数据进行比较,这样内层表其实只需要循环1000/100=10次,减少了9/10

 

参考文章:

https://blog.csdn.net/itas109/article/details/79152144

http://blog.sina.com.cn/s/blog_a1e9c7910102x1bz.html

https://blog.csdn.net/fatesunlove/article/details/105809280

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
3月前
|
SQL 缓存 监控
MySQL缓存机制:查询缓存与缓冲池优化
MySQL缓存机制是提升数据库性能的关键。本文深入解析了MySQL的缓存体系,包括已弃用的查询缓存和核心的InnoDB缓冲池,帮助理解缓存优化原理。通过合理配置,可显著提升数据库性能,甚至达到10倍以上的效果。
|
3月前
|
SQL 存储 关系型数据库
MySQL体系结构详解:一条SQL查询的旅程
本文深入解析MySQL内部架构,从SQL查询的执行流程到性能优化技巧,涵盖连接建立、查询处理、执行阶段及存储引擎工作机制,帮助开发者理解MySQL运行原理并提升数据库性能。
|
3月前
|
SQL 关系型数据库 MySQL
MySQL的查询操作语法要点
储存过程(Stored Procedures) 和 函数(Functions) : 储存过程和函数允许用户编写 SQL 脚本执行复杂任务.
244 14
|
3月前
|
SQL 关系型数据库 MySQL
MySQL的查询操作语法要点
以上概述了MySQL 中常见且重要 的几种 SQL 查询及其相关概念 这些知识点对任何希望有效利用 MySQL 进行数据库管理工作者都至关重要
125 15
|
3月前
|
SQL 监控 关系型数据库
SQL优化技巧:让MySQL查询快人一步
本文深入解析了MySQL查询优化的核心技巧,涵盖索引设计、查询重写、分页优化、批量操作、数据类型优化及性能监控等方面,帮助开发者显著提升数据库性能,解决慢查询问题,适用于高并发与大数据场景。
|
3月前
|
SQL Java 关系型数据库
Java连接MySQL数据库环境设置指南
请注意,在实际部署时应该避免将敏感信息(如用户名和密码)硬编码在源码文件里面;应该使用配置文件或者环境变量等更为安全可靠地方式管理这些信息。此外,在处理大量数据时考虑使用PreparedStatement而不是Statement可以提高性能并防止SQL注入攻击;同时也要注意正确处理异常情况,并且确保所有打开过得资源都被正确关闭释放掉以防止内存泄漏等问题发生。
154 13
|
3月前
|
SQL 关系型数据库 MySQL
MySQL数据库连接过多(Too many connections)错误处理策略
综上所述,“Too many connections”错误处理策略涉及从具体参数配置到代码层面再到系统与架构设计全方位考量与改进。每项措施都需根据具体环境进行定制化调整,并且在执行任何变更前建议先行测试评估可能带来影响。
1111 11
|
3月前
|
SQL 关系型数据库 MySQL
排除通过IP访问MySQL时出现的连接错误问题
以上步骤涵盖了大多数遇到远程连接 MySQL 数据库时出现故障情形下所需采取措施,在执行每个步骤后都应该重新尝试建立链接以验证是否已经解决问题,在多数情形下按照以上顺序执行将能够有效地排除并修复大多数基本链接相关故障。
357 3
|
3月前
|
SQL 监控 关系型数据库
查寻MySQL或SQL Server的连接数,并配置超时时间和最大连接量
以上步骤提供了直观、实用且易于理解且执行的指导方针来监管和优化数据库服务器配置。务必记得,在做任何重要变更前备份相关配置文件,并确保理解每个参数对系统性能可能产生影响后再做出调节。
415 11
|
3月前
|
SQL 监控 关系型数据库
MySQL高级查询技巧:子查询、联接与集合操作
本文深入解析了MySQL高级查询的核心技术,包括子查询、联接和集合操作,通过实际业务场景展示了其语法、性能差异和适用场景,并提供大量可复用的代码示例,助你从SQL新手进阶为数据操作高手。

推荐镜像

更多